Award Number: DAMD17-00-1-0448

TITLE: Cox Model for Interval Censored Data in Breast Cancer
Follow-up Studies :

PRINCIPAL INVESTIGATOR: George Y.C. Wong, Ph.D.

CONTRACTING ORGANIZATION: Strang Cancer Prevention Center
New York, New York 10021-4601

"REPORT DATE: July 2004
TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Publlc Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.

/[ 20050105 083



REPORT DOCUMENTATION PAGE B OB

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
fo the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY 2. REPORT DATE ) - 3. REPORT TYPE AND DATES COVERED

(Leave blank) July 2004 Final (1 Jul 2000 - 30 Jun 2004)
4. ﬂTLE AND SUBTITLE . 5. FUNDING NUMBERS
Cox Model for Interval Censored Data in Breast Cancer DAMD17-00-1-0448

Follow-up Studies

6. AUTHOR(S)
George Y.C. Wong, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Strang Cancer Prevention Center REPORT NUMBER -
New York, New York 10021-4601 i

E-Mail:  gwong@strang.org

9. SPONSORING / MONITORING - » . 10. SPONSORING / MONITORING
AGENCY NAME(S) AND ADDRESS(ES) AGENCY REPORT NUMBER

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

71, SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for Public Release; Distribution Unlimited

13. ABSTRACT (Maximum 200 Words) e
The overall objective of this research proposal is semi-parametric inference of the Cox proportional hazards (PH)

8
regression model for a survival function Pr(X > x| Z =z) = S(x|z) =[S, (x)]ez , where X is a time-to-event variable, which is

subject to interval censoring, Z represents the covariates, S, is a baseline survival function, and B represents the regression

coefficients. The main objective of our research is to develop asymptotic inferences of the generalized maximum likelihood
estimators (GMLE) of # and S(-|z). A critical limitation with GMLE under interval censoring is that it is computationally
feasible only for a small data set. We therefore propose to also investigate asymptotic properties of a computationally simpler
altenative to GMLE, namely two-stage estimators (TSE) of  and S(-| z) obtained by a two-stage modified Newton —Raphson
algorithm involving data grouping. In the four years of our research, we have implemented a foolproof algorithm for obtaining
TSE, proved consistency and established asymptotic normality for both GMLE and TSE under both discrete and continuous
distributional assumptions, and proposed new diagnostic method for PH assumption. Also, we have successfully applied our
asymptotic Cox regression methodology to the analysis of a large-scale, long-term breast cancer relapse follow-up study. Our

results will be useful to data analysis of breast cancer relapse follow-up studies, chemoprevention intervention trials and genetic
studies on familial aggregation of breast cancer and related cancers.

.74. SUBJECT TERMS 15. NUMBER OF PAGES
Breast cancer, interval-censored data, cox regression model, maximum 46

likelihood, two-step estimation, asymptotic properties 76. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT ’
Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 ) Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
2988-102



FOREWORD

Opinion, interpretations, conclusions and recommendations are those of the author and are
not necessarily endorsed by the U.S. Army.

_X Where copyrighted material is quoted, permission has been obtained to use such
material. |

_ X Where material from documents designated for limited distribution is quoted, permis-
sion has be obtained to use the material.

_X Citations of commercial organizations and trade names in this report do not constitute
an official Department of the Army endorsement or approval of the products or services of
these organizations.

N/A In conducting research using animals, the investigator(s) adhered to the “Guide for
the Care and Use of Laboratory Animals”, prepared by the Committee on Care and Use of
Laboratory Animals of the Institute of Laboratory Resources, National Research Council
(NIH Publication No. 86-23, Revised 1985).

N_/A For the protection of human subjects, the investigator(s) adhered to policies of appli-
cable Federal Law 45 CFR 46. :

N/A In conducting research utilizing recombinant DNA technology, the investigator(s) ad-
hered to current guidelines promulgated by the National Institute of Health.

N/A In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to
the NIH Guidelines for Research Involving Recombinant DNA Molecules.

N/A In the conduct of research involving hazardous organisms, the investigator(s) adhered
to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

W




A. TABLE OF CONTENTS

Cover

SF298

Foreword

Introduction

Body

Key research accomplishments
Reportable outcomes
Conclusions

References

Appendices




B. INTRODUCTION _

Interval-censored (IC) data are encountered in three areas of breast cancer research.
The most common application is in clinical relapse follow-up studies in which the study
endpoint is disease-free survival. When a patient relapses, it is usually known that the
relapse takes place between two follow-up visits, and the exact time to relapse is unknown.
In statistics, we say relapse time is interval censored. Interval censoring is also encountered
in breast cancer registry studies in which information on family history of cancer is updated
periodically. The Strang Breast Surveillance Program for women at increased risk for breast
cancer, for instance, has enlisted over 800 women with complete pedigree information which
. is verified and updated continuously. Family history data such as age at diagnosis of a
specific cancer, or a benign but risk-conferring condition, are obtained from each registrant
at each update. Time to a cancer event, and definitely time to first detection of a benign
condition, are at best known to fall in the time interval between the last update and age
at diagnosis. A third but increasingly important area of application of interval censoring
is in breast cancer chemoprevention experiments or prevention trials, which involve the
observation of one or more surrogate endpoint biomarkers (SEB) over time. The scientific
questions of interest here are estimation of time for an SEB to reach a target value, and
estimation of time from cessation of intake of a chemopreventive agent to the loss of its
protective effect. Unfortunately, the exact values of both these time variables are known
only to lie in between two successive assay inspection times. In a breast cancer follow-up
study, we often encounter covariates (for instance, tumor size and nodal status in a relapse
study, and baseline SEB value in a chemoprevention trial). A regression model will be
needed for the analysis of such data.

Let X denote a time-to-event variable with distribution F((z) = Pr(X < z), or equiv-
alently, survival function S(z) = 1 — F(z). In interval censoring, X is not observed and
is known only to lie in an observable interval (L, R). In our previous DOD funded grant,
we have made fundamental contributions to both the theory of the generalized maximum
likelihood (GML) estimation of S, and the computation in connection with the inference of
GML estimator (GMLE) § of S. These contributions are restricted to the case of univariate
IC data without covariates.

The Cox proportional hazards regression model [2] specifies that covariates have a
proportional effect on the hazard function of X. This model provides powerful means for
fitting failure time observations to a distribution free model and for estimating the risk for
failure associated with a vector of covariates. It is extensively used for right-censored data.
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Finkelstein [3] applied the Cox model to the analysis of IC data. However, she did not
establish asymptotic properties of the GMLE of the parameters in the model; moreover, she
did not investigate the convergence properties of the Newton-Raphson (NR) algorithm for
finding the GMLE values.

Our recent interest in IC data with covariates is driven by needs arising from two re-
lated areas of breast cancer research at Strang Cancer Prevention Center. First, we have
been conducting a long-term prognostic follow-up study of breast cancer bone marrow mi-
crometastasis (BMM) on relapse, involving 375 women. We shall need an efficient algorithm
to find the GMLE of the regression coefficients of the Cox model. Second, we have just com-
pleted a one-year confirmation chemoprevention trial of of indole-3-carbinol (I3C) for breast
cancer prevention. In this prevention trial we monitored the levels of two SEB’s, a urinary
estrogen metabolite ratio and a blood counterpart, both of which are subject to interval
censoring. An earlier dose-ranging study of I3C conducted by Wong et al [4] has been
published. ’

The overall aim of this research proposal is to develop statistical inference for IC data
with covariates that are encountered in breast cancer relapse follow-up studies, breast can-
cer chemoprevention trials employing surrogate endpoint biomarkers, and in breast can-
cer registry follow-up studies of familial aggregation of breast and other forms of cancer.
Asymptotic generalized maximum likelihood theory under the Cox regression model will
be investigated and computer software package for maximum likelihood inference will be
implemented.

C. BODY

C.1. Model Formulation and Likelihood Equations.

Let Yk,1 < Yk 2 < -+ < Yk, ik denote the follow-up times for a patient who has made
K follow-up visits, in a longitudinal follow-up study. Since the number of visits for each
patient may vary, K is a random positive integer. For convenience, define Yx o = 0 and
Yk x+1 = 0o. The time-to-event variable of interest, X, is not directly observed; instead, it
is known to lie in between two successive censoring time points (Yk ;, Yk, j+1), where j =0,
..., K. Note that X is left censored if j = 0, strictly interval censored if 0 < 7 < K, and
right censored if X > Yk k. The observable IC data corresponding to X is given by

(L, R) = (YK,i,YK,i—i-l) if YK,,; <X< YK,i+1a 1= 0, ]., ...,K. (1)

In addition to (L, R), we also observe a p x 1 covariate vector Z. We assume that K
and the Y} ;’s are independent of (X, Z).




The Cox regression model for the survival function at X = z given Z = z is represented
by
28
S(z|z) = [So(@)]* ", (2)

where zf3 is the dot product of Z and B, S,(z) is a baseline survival function and B is a

p-dimensional regression coefficient vector.

Let I; = (L;,R;,2;), i = 1, ..., n, be a random sample of size n interval-censored
observations with covariates. In terms of the original observed intervals, the likelihood
function of S and b is given by

L= TI(S@)™ - (S@)*™), ©

where S is a survival function, and b is a p x 1 dimensional vector. The GMLE of (S,, 8) is
a value (S,b) that maximizes (3) over all survival functions S and all b € RP. '

Since S, places all probability mass on the innermost intervals of the I;’s (see Peto
[6] or Turnbull [6]), it is often computationally simpler to express L in terms of innermost
intervals.

We say that an interval A is an innermost interval of the I;’s if A is a nonempty finite
intersection of one or more of the I;’s such that either ; N A =0 or I; N A = A for each
i. Suppose there are a total of m distinct innermost intervals A; = (§;,n;], where n; < &4
and m < n. Then the likelihood function (3) is equivalently given by

E=[TIY s = (3 s)°™), @)

=1 k>l k>r;

where l; = sup{j : n; < L;}, ; =sup{j : n; < R;} and s = (s1, ..., 8r,) denote the vector
of the probability weights. The log likelihood of (s, b) is

n

L(s,0) =3[ 5™ = (3 sx)™). (5)

=1 k>li k>1‘i
Note that (3. sk)ez‘b =1ifr;=0and (} .., sk)ez‘b =0if [; =m.

C.2. Generalized maximum likelihood estimation.
A GMLE of (S,, ) is a value of (s,b) that maximizes the likelihood function (5). We
could follow the NR algorithm outlined by Finkelstein [3]. However, this would involve the
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inverse of a matrix of order (m +p — 1) x (m + p — 1). Since m can be potentially large
when n is large, the unmodified NR algorithm is not feasible for a large data set. The major
serious problem of the unmodified NR algorithm, however, is that it will almost always
diverge in one iteration from any reasonable starting value. The divergence is due to the
fact that the first Newton step will hit the boundary of the parameter space. Such a serious
computational problem was not anticipated at the time we submitted the DOD grant.

To reduce computation burden due to dimensional effects, we propose to group the orig-
inal data (L;, R;) and then apply a two-step modified NR algorithm to obtain the two-step
estimators (TSE) of (S,, ) based on the innermost intervals corresponding to the grouped
intervals. In the first year of our research, we obtained a first version of a two-step modified
NR algorithm to find TSE. We also carried out simulation studies to investigate sensitiv-
ity of estimated values of TSE to partition sizes. This version of two-step computational
scheme, however, can diverge with some simulated IC regression data. We reported our
initial findings in a preliminary manuscript in Wong and Yu [7]. In our second year of
research, we presented an improved version of algorithm at the Era of Hope 2002 DOD
Breast Cancer Research Program Meeting in Orlando (see Wong and Yu [8]).

In our third and fourth years of research, we continued to improve and update the
two-step algorithm. We have tested the latest version of the algorithm on many simulated
data sets and have not encountered any convergence difficulty.

In our second year of research, we applied our two-step estimation procedure to the Cox
regression analysis of a long-term prognostic relapse follow-up study involving 375 women
with unilateral T1-2N0O, T1-2N1 and T3-4 breast cancer. All the patients were treated at
Memorial Sloan Kettering Cancer Center and the follow-up are being conducted at Strang
Cancer Prevention Center. The main objective of the study is to assess the prognostic sig-
nificance of bone marrow micrometastasis (BMM) in predicting relapse. Standard clinical
variables including nodal status and tumor diameter were included in the Cox model. Al-
though we have not completely established asymptotic normality to validate the P values
that were reported for the study, our two-step Cox regression analysis gave strong indication
that BMM was not as predictive of relapse as previously expected (Osborne and Wong [1]).
In our second year of research, therefore, we have moved ahead of our statement of work
by making a start for Task 8. Since the BMM relapse follow-up study provides a complete
and final data set that optimally satisfies our need of an empirical example to illustrate our
asymptotic GML procedure for Cox regression, we have chosen to focus on this data set
instead of the examples mentioned in Task 8.
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Also, in the second year of our research, we established consistency of the GMLE of
B and S, (and hence S(-|z)) under the following assumptions:

AS1: S, is arbitrary and each of the censoring variables,Y3, ...., Y takes on finitely many
values.
AS2: S, is arbitrary and each of the censoring variables,Y, ...., Y} is continuous and some
regularity conditions are imposed on either S, or the joint distribution function G of K, Y3,
ey YK
Specifically, under AS1 and AS2
Pr{lm §=p}=1, (6)

and

Pr{ lim sup So(t) — So(t)| = 0} =1, (7

where H denotes the support set of Y3, ..., Yx. Note that S, (t) is guaranteed to be consistent
for t € H, and not elsewhere. However, the set H is not necessarily a time interval (for
instance, H may be a collection of discrete points). In order for the consistency results to be
more useful, we established that if S, is continuous, and the support of Yy, ..., Yx is dense
in [0, T for some T > 0, then S,(t) is consistent for all ¢ € [0, T]. The practical implication
of the denseness requirement is that pointwise consistency of S,(t) would hold only if all
the subjects in a follow-up study must be followed at very frequent close intervals.

We also established similar consistency results for the TSE, with an added assumption
that the maximal length of the partition interval tends to 0 as n tends to co. These results
are summarized in Wong and Yu [7].

Asymptotic normality is the most crucial aspect of our research because it is needed in
making confidence statements and in performing hypothesis testing. In the third year of
our research, we investigated asymptotic normality under assumptions

AS3. S, is arbitrary and satisfies a monotonicity condition, and each of Yx 1, ..., Yk, x takes
on finitely many values;

AS4. S, is as in AS3, and each of Yk 1, ..., Yk k takes on countably many values;

AS5. S, is as in AS3, each of Yk 1, ..., Yk, k is continuous and some regularity conditions are

imposed on either S, or G.

Asymptotic normality of GMLE or TSE is straightforward to establish under the finite
assumption AS3. As for AS4 and AS5, we carried out extensive simulation studies to guide
our research. The studies suggest that both GMLE and TSE of 8 and S, are asymptotically
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normal under AS4. However, only GMLE and TSE of § can be asymptotically normal under
AS5. We have just completed theoretical proofs to substantiate our numerical studies. OQur
simulation studies suggest that under AS5 asymptotic inference for GMLE and TSE of S,,
and hence S(-|z) will have to be accomplished via a bootstrap method. In our fourth and
final year of research, we have investigated a bootstrap approach for asymptotic interval
estimation of S, when G is continuous. We have completed a manuscript that summarizes
our asymptotic normality findings (see Yu and Wong [9)]).

Log-Log Difference Plot For BMM

0.5

X[, 2]
0.0

-0.5

0 1000 2000 3000 4000 5000
X[, 1]

Figure 1.

Cox regression is appropriate only if proportional hazards (PH) assumption is satisfied
by the data. Under the PH assumption, the log-rank test is most powerful. At present,
a statistically useful diagnostic plot for PH assumption is lacking. Moreover, a formal
significant test is not available. In the third year of our research, we provided statistical
solutions to satisfy both these needs. For the diagnostic plot, we proposed to plot In$; ) -
InS, (t) verse t for any two groups, where S refers to GMLE of S under interval censoring.
A horizontal line should be expected if PH assumption holds. For a test for PH assumption,
we proposed an asymptotic chi-square test. In our fourth and final year of research, we
have completed a manuscript to report on our diagnostic solutions (see Wong and Yu [10]).
We applied the diagnostic procedure to the BMM data. Figure 1 is the log difference plot
for BMM+ and BMM- groups It is clear that PH assumption was inappropriate for the
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BMM data. The asymptotic chi-square test gave a P-value of 0.013 indicating a significant
departure from PH assumption. '

BMM Status
e
""" —— BMM- (54/251)
------------- BMM+ (35/124)
o _|
o
© _|
o

proportion relapse free
0.7

3 P<0.05
S P>0.2 Cox regression
; I T I | [ |
0 2 4 6 8 10
time in years
Figure 2.

Since Cox model is not appropriate for the BMM relapse follow—ﬁp study, we have little
choice but to broaden our research on regression models for IC data by including semi-
parametric models that do not require PH assumption to hold. In the second year of our
research, we proposed to fit the BMM data using a linear regression model with an unknown
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nonparametric distribution function for the error term. We successfully derived an non-
iterative algorithm to obtain the GMLE of the regression coefficient in case of a simple linear
regression model. When we applied such a model to the BMM data in a univariate analysis,
BMM was significant at P < 0.05. Incidentally, BMM was also significant by a weighted
Kaplan-Meier statistics (see Pepe and Smith [11]) which does not require PH assumption.
Figure 2 gives the IC-version of the Kaplan-Meier plots of the two BMM groups. This
example clearly demonstrates that inappropriate application of the Cox regression model
can potentially lead to an errorneous statistical conclusion. We published a statistical papér
on the theory of the linear regression approach in the third year of our research (see Yu and
Wong [12]) and gave a presentation of the novel analysis of the BMM data in the fourth
and final year of our research (see Wong, Osborne and Yu [13]).

D. KEY RESEARCH ACCOMPLISHMENTS

e We have implemented a statistical algorithm for computing GMLE of the regression
coefficients B and the baseline survival function S,.

e We have implemented a statistical algorithm for computing TSE of 8 and S,.

e Computer programs for both GMLE and TSE calculations have been made available
to the public via the internet.

e We have proved consistency of GMLE and TSE of 3 and S, under both discrete and
continuous assumptions about the censoring distribution G.

e We have performed extensive simulation studies to investigate the asymptotic properties
of GMLE and TSE of 8 and S,. Our results have provided strong evidence that S, is
NOT asymptotic normal when G is continuous. |

e We have derived the asymptotic normal means and covariance matrices of GMLE and
TSE of 3.

e When G is finite or countably infinite, we have derived the asymptotic means and
covariance matrices of GMLE and TSE of S,.

e We have proposed a diagnostic plot for checking proportional hazards assumption for
Cox regression and constructed a chi-square test for assessing this assumption.

e We have completed regression analysis of a long-term breast cancer follow-up study as-
sessing the prognostic significance of bone marrow micrometastasis in predicting relapse
in a cohort of 375 women, using asymptotic GML Cox regression, weighted Kaplan-
Meier statistic, semi-parametric linear regression methods.
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E. REPORTABLE OUTCOMES

o One oral presentation of an abstract at 2002 ASCO Meeting ([1]).

e Two poster presentations at 2002 Era of Hope DOD Breast Cancer Research Program
Meeting and 2004 Annual San Antonio Breast Cancer Symposium. ([8],[13]).

e Three published abstracts on the proposed two-stage modified Newton-Raphson algo-
rithm and applications of the methodology to a breast cancer relapse follow-up study.
([1,[8],[13}).

e A manuscript on computation of GMLE and TSE of Cox regression parameters ([7]).

e A manuscript on consistency and asymptotic normality of GMLE and TSE ([9]).

e One published statistical paper on regression analysis of IC data ([12]).

e A manuscript on assessing the appropriateness of proportional hazards assumption for
Cox regression ([10]).

e Computer programs for calculating GMLE and TSE made available for the public via
the internet site hitp://www.math.binghamton.edu/qyu/indez.html.

F. CONCLUSIONS

In the four years of our DOD grant, we have successfully accomplished our research
objectives in developing asymptotic generalized maximum likelihood inference of Cox pro-
portional hazards regression model with IC data. We have developed statistical algorithms
that can efficiently compute GMLE and TSE of the regression coefficients 3 and the baseline
survival function S, for any reasonable sample size. We have proved consistency of GMLE
and TSE of # and S, under both discrete and continuous assumptions about the interval
censoring distribution G. We have established asymptotic normality for GMLE and TSE of
P for G unrestricted. When G is continuous, however, we have numerically demonstrated
that GMLE and TSE of S, are not asymptotically normal. In the fourth and final year
of our DOD grant, we have investigated a bootstrap method for the asymptotic interval
estimates of S,.

Cox regression is appropriate only if proportional hazards (PH) assumption is satisfied
by the data. We have proposed a useful diagnostic plot for PH assumption and validated a
chi-square test for it.

In our fourth and final year of research, we have completed the final version of a
computer software for asymptotic confidence intervals and hypothesis testing for GMLE
and TSE of B and S(-|z). We have also completed the data analysis of the BMM prognostic
study.




The results which we have established will be useful to clinicians analyzing breast cancer
relapse follow-up prognostic studies, breast cancer researchers pursuing chemoprevention
intervention trials involving surrogate endpoints biomarkers, and genetic epidemiologists

conducting studies on familial aggregation of breast cancer and related cancers.
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Breast cancer hone marrow micrometastases: a long-term prognostic study of
systemic tumor cell burden on relapse. M. P. Osborne, G. Wong; Cornell Univ
" Medcl College, New York, NY

‘The presence of bone marrow micrometastases BMM) detected at the time
of initial surgery has been shown to predict relapse-free survival (RFS) by
different investigators. We have conducted -a long-term (BMM) study
involving 375 women with unilateral T1-2NO (56%), T1-2N1 (42%), and
T3-4(2%) breast cancer. BMM was determined using monoclonal antibod-
ies to cytokertatin. Median fol!ow—up was 8 years (range 1 month -15
years). BMM was detected in 124 (35%) patients. Logistic regression
analysis did not show any correlation between BMM prevalence and
standard prognostic indicators, including lymph node status and tumor
diameter. The number of BMM cells detected, representing the systemic
tumor cell burden (TCB), was also examine for its.relationship with
standard prognostic variables using lognormal regression analysis. No
significant correlation was established. Recent methodology of interval-
censored survival analysis showed that BMM prevalence does not predict
relapse. At a median follow-up of 2.5 years, TCB was a significant
univariate predictor of early relapse. In a multivariate analysis, lymph node
positive patients with high TCB had a significantly shorter RFS than all-

' . other patients. However, at a median follow-up of 8 years, the prognostic

significant-of TCB in node-positive patients was reduced. Nevertheless, the
combination of a positive nodal status and a high TCB still identifies a
prognostically poor subgroup with a 5-year RFS around 50%. There were
only 22 (6%) such patients in our study. most of whom had received
adjuvant therapy. This group may reflect early stage 1V disease; therefore,
this group deserves close attention in a larger study to verify the poor
prognosis we have observed as well as to evaluate new treatment protocols
toi vmprove RFS. :

230 ’ General Poster, Sat, 1:00 PM - 5:00 PM

Docetaxel + epirubicin and docetaxel + doxorubicin are effective an ]
tolerated first-line treatments for metastatic breast cancer. .R. C. F.
K. M.. Malinovszky, P. J. Barrett-Lee, A.. Howell, S. R. Johnston;
Wales Cancer Inst, Swansea Wales, UK; Velindre Hospital,

Christie Hospital, Manchester, UK; Royal Marsden HospitalfL ondon, UK

Background and objectives: Docetaxel (Taxotere®).+ apfhracyclines have
been shown to be efficacious and tolerable first-line£hemotherapies for
metastatic breast cancer. A large phase NI study, 306, showed that
docetaxel + doxorubicin is more effective than thZold standard doxorubi-
cin + cyclophosphamide. The aim of this on-ggifig prospective study is to
evatuate the efficacy and safety of docetaxel 4/loxorubicin or epirubicin in
a UK, community-based, real-life setting apQ to compare the results with
those obtained from TAX 306. This is an jfterim report. Methods: Patients
received docetaxel 75 mg/m? and eithep/doxorubicin 50 mg/m? or epirubi-
cin 75 mg/m? D1 g3 weeks, at the trgéting clinician’s discretion. To date,

225 patients (WHO performance stafus 0—2) have been enrolled, of which
79 received doxorubicin and 146, pirubicin. The recommended anthracy-
cline dose was administered in 94% of cycles for doxorubicin and 90% for
epirubicin. All patients were gfaluated for safety and 158 patients (70%),

who received =2 chemotheydpy cycles, were evaluated for tumor response.

Results: Ninety-three (592) patients had a response (partial or complete)
to either regimen; hoykver, thére were no significant differences in
response between the fwo treatment groups (doxorubicin 61%, epirubicin
58%; .p=0.71). Thé response rate is similar to that achieved with
docetaxel-doxorubjfin in TAX 306 (59%). Neutropenia was the most
common adverse/vent, with 91 patients (40%) requiring hospitalization;
64 (28%) with/neutropenia and 38 (17%) with febrile neutropenia or
neutropenic gepsis (some patients had both). Overall, there was no
significant gffference in frequency of hospitalization between the two arms
(doxorubigdn 53%, epirubicin 41%; p=0.08). There was one death from
neutropefic sepsis (0.4%) in the epirubicin arm. Conclusion: The interim
resultsfrom this real-life study confirm previous findings from a large phase
11l spldy: docetaxel + doxorubicin or epirubicin are effective and well
tolérated first-line treatments for metastatic breast cancer. Both regimens
exhibited similar efflcacy and safety.
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Reduction of metastases in breast cancer - patients treated witipreope
hormone replacement therapy (HRT): a-retrospective analysig/in 972 wi

- F. Schuetz, 1. J. Diel, T.von Holst, -U. Haus, G. Basplrt. Univers

Heiﬂeﬂierg, Dept Gynaecology and Obstetncs Hej elberg, Gen
IMEREM, Nuernberg, Germany .

Substitution of estrogenes and progestins is the
prophylaxis for postmenopausal discomforts |i
etc. However.in.the majority of studies long
with an slightly increased risk of breast.c
with preoperative HRT have a lower:mo
For further investigation we examingd 972 patients between 45 an
years at the time of the first diagng§is of breast cancer with and wi
HRT with regard to the incidency/of bone metastases. 241 patients
premenopausal (mean 484+3.0y), 731 were postmenop:
(55.5:4.4y), 303 of them yeived HRT (group HRT+) and 428 pal
i of group HRT+ received estrogenes o
minimum of 1 year (mpén 5.5+4.0y). Although the tumor size of §
HRT- was significantly/higher than in'group HRT+ (5.5+1.8vs. 2.1+
nodal status, S-ppfise fraction, grading and hormone-receptor s
showed no differghces: Adjuvant treatment in the postmenopausal g
siénificantly.different; In regard to the incidence of met
hout HRT have s:gmﬁcantly (p<0.001) more bone met
ents of group HRT- versus 5 patients of group HRT+).
pulmonal/(18:2) and liver (28:6) ‘metastases were signifi icantly
frequen in patients without an preoperative HRT. It was shown in vin
in clinjfal bisphosphonate trials that a normalization of bone metaboli
able jo reduce subsequent bone metastases efficiently. We may as
thatfhe incidence of bone metastases tan be reduced by normalizing’
methbolism (soil) and lowering condmons of tumor cell seeding by HR

t common therap
hot flushes, osteopo
rm HRT has been assoc
er. On the other hand pai
lity and a longer overall-sur
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Weekly docetaxel with or mﬂnut corticosteroid premedi _as’@
- second-line treatment in patients (pts) with metastatic breast ¢ (MBC

Stemmler, W. Mair, M. Stauch, J. Papke, G. Deutsch, W' Abenhard
Dorn, C- Kentenich, C. Jackisch, S. Leinung, O. Brudler, Vehlmg—Kl
J. Stamp, M. Malekmohammadi, V. Heinemann; Medij IDept i, Yn
sity of Munich, Munich, Germany; Oncologic Practigb, Munich, Germ
Deaconess Hospital, Karlsryhe, Germany; Acadepfic Teachmg Hosp
Aschaffenburg, Germany; Dept of.Gynecologyf University of My
Munich, Germany; Dept of Gynecology, Univghsity of Midnster, Mdn
Germany; Aventis Pharma Deutschland, Bad/oden, Germany %

Objective: This large phase Il study wad designed to evaluate (li
efficacy of a weekly schedule of docetgfe! as first or second-line the
and (2) toxicity with or without cortic id premedication. Methods:’

pts {median age 58, range 37-80)Aith MBC were included in the t
Docetaxel was given at weekly dosg of 35'mg/m? x6, followed by a 24
rest. Additional cycles with 3 of treatment and 2 weeks of rest3
administered until disease progfession. The first 34 pts were randomizt
receive dexamethasone 8 prior to docetaxet or no premedicat
Results: To date, 110 pts -fine 16, second-line 94) were evaluabk
toxicity, all had measurabffe disease and ECOG performance status =2
99 pts who received >6&/doses of docetaxel were evaluable for respons
total of 1367 doses g docetaxel were given (median 10, range 1-i
Response (first/secofid-line): CR 1/9 pts (7.1%/10.6%), PR 4/28

(28.6%/32.9%), S0 4/28 pts (28.6%/32.9%) and PD 5/20 pts (35.
23.6%). Overall iAsponse rate was 35.7%/43.5%. Median time to prog
sion-was 6.6/58 months and median survival was 14.2 months (not
reached for ffst-line pts). Hematologic toxicity was usually mil

moderate, wth no difference between the two premedication gr®
Non- hemat ogic toxicity in percent of pts (+/- steroids) included: G
and il plgural effusions 1.1%/5.9%, edema 2.2%/5.9%, facrimd
10.8%/)/1 6%, epistaxis 9.7%/17.6%, nail changes 12.9%/35.3%. T
ment whs delayed due to neutropenia in 99 cycles (7.2%), and omitt®
67 cy€les (4.9%). Dose reductions of level 1/2 (-5/-10 mg/mzldose)“
required in 10/5 pts (9%/4.5%). Conclusions: The results of this ¥
confirm that a weekly schedule of docetaxel 35 mg/m? is efficient and
Corticosteroid premedication as generally recommended is mandatory:
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WITH INTERVAL-CENSORED DATA
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Abstract: We consider the estimation problem under the Cox proportional hazards model with interval -
censored data. Under this model, the survival function S at time z given the covariate z satisfies S(z|z) =

(So(z))eﬁ", where Sp is a baseline survival function. B and S are estimated by the generalized maximum
likelihood estimator (GMLE). The Newton-Raphson (NR) method and the profile likelihood (PL) method for
obtaining the GMLE do not work most of the time in our simulation study and our cancer research data, as
the maximum value of the likelihood is achieved outside the parameter space and the GMLE is achieved on the
boundary of the parameter space in these cases. We propose a different algorithm to compute the GMLE. The
algorithm is able to search for the GMLE along the boundary as well as within the parameter space. We also
propose to group the data to reduce the dimension of the parameter space. Simulation results suggest that the
estimator is consistent. We apply our method to the cancer cosmesis study and to another cancer research data.

1. Introduction We consider the estimation problem under the Cox proportional hazards model (Cox, 1972)
with interval -censored data.

Interval-censored data are encountered in many areas of the medical research. For instance, in clinical cancer
relapse follow-up studies, the study endpoint is disease-free survival. When a patient relapses, it is usually known
that the relapse takes place between two follow-up visits, and the exact time to relapse is unknown. Let X denote
a time-to-event variable with distribution F(z) = Pr(X < ), or equivalently, survival function S(x) = 1 — F(z).
Then X is not observed and is only known to lie in an observable interval (L, R]. A standard method is to use
the generalized maximum likelihood estimator (GMLE) to estimate S.

The Cox proportional hazards model specifies that covariates have a proportional effect on the hazard function
of the failure time distribution, namely, the survival function at X = z given Z = z can be represented by

* S(z]z) = [So(2)]”, (11)

where 28 = 2/, i.e., the dot product of two vectors, Sy(z) is a baseline survival function and B is a p dimen-
sional regression coefficient vector. This model provides powerful means for fitting failure time observations to a
distribution free model and for estimating the risk for failure associated with a vector of covariates.

Finkelstein (1986) applied the Cox model to the analysis of interval-censored data. Huang (1996) studied
the asymptotic properties of the GMLE of the regression parameters in the Cox model with current status data,
which is a special case of interval-censored data. There is no explicit expression for the GMLE, thus one has to
use numerical methods. Finkelstein suggested to use the Newton-Raphson (NR) method to compute the GMLE.

! Partially supported by Army Grant DAMD17-99-1-9390 and DAMD17-00-1-0448.

1



Huang suggested to use a profile likelihood (PL) approach. However, both authors did not really compute any
estimates under Cox’s model in their paper, except under the restricted model that 8 = 0. In fact, in our
simulation studies these methods do not work most of the time. Also these methods do not work in the data set
used in Finkelstein (1986). We shall illustrate the reasons via a simple data example. To-date, how to find the
GMLE in the Cox regression model remains unsettled.

There are three computational problems in the Cox regression model approach with interval-censored data:
(a) a value of the likelihood function at a non-monotone estimate of So can be greater than that at the GMLE;
(b) the GMLE may occur on the boundary of the parameter space;

(c) there are often too many parameters to be estimated.

If case (b) holds, one may apply the NR method to the boundary of the parameter space. However, this
approach is not feasible if n is moderate (see Appendix 2).

In this paper, we propose a different algorithm to deal with Troubles (a) and (b). The main idea is to allow
searching the GMLE along the boundary, as well as within the parameter space, dynamically. We also propose to
group the data in a certain manner to reduce the dimension of the parameter space. In a cancer research data set,
the number of parameters is reduced from 59 to 8. The paper is organized as follows. In Section 2, we introduce
notations and the model. In Section 3, we introduce our procedure. In Section 4, we apply the method to two
cancer research data. In Section 5, we present simulation results. The results suggest that the new proposed
procedure is feasible and the estimates of parameters and their variances are consistent. Some tedious calculation
is put in Appendix 1. In Appendix 2, we present a simple example to illustrate that the NR method, a scaled
NR method and a PL method do not work.

2. The Cox regression model and notations. We shall first describe the model. Let Y1 <Yg2<--<
Yk, denote the follow-up times for a patient who made K follow-up visits, in a longitudinal follow-up study.
Since the number of visits for each patient may vary, K is a positive random integer. For convenience, define
Yk, = 0 and Yk k41 = 0o. The time-to-event variable of interest, X, is not directly observed; instead, it is
known to lie in between two successive censoring time points (Yk.j, Yk, j+1), where j =0, ..., K. Note that X is
left censored if j = 0, strictly interval censored if 0 < j < K, and right censored if X > Y« k. The observable
interval-censored data corresponding to X is given by

(L, R) = (YK,.',YK,"+1) if YK,,- <X< YK,,'+1, t1=0,1,.., K. (2.1)

In addition to (L, R), we also observe a p x 1 covariate vector Z. We assume that K and Y}, ;'s are independent
of (X, Z).

Let (L, Ri,2;), i = 1, ..., n, be a random sample of interval-censored observations with covariates. The
likelihood function is .
bz; bz,
L=TJ(s@)"™ - (SR))™), (2.2)
=1

where S is a survival function, and b is a p x 1 dimensional vector. The GMLE of (Sp, A) is a value of (S,b) that
maximizes the likelihood function L in (2.2) over all possible survival functions S and b € RP.

To compute the GMLE, we shall introduce some notations. We say a set is a finite intersection of observed
intervals I;’s (see (2.1)) with end-points L; and R; if the set is an intersection of one or more observed intervals.
We say an interval A is an innermost interval if it is a nonempty finite intersection of the observed intervals such
that for each observed interval I, I; and A are either disjoint or nested. Suppose there are totally m innermost
intervals. Let §; and 7;, i = 1,2,...,m denote the left and right end-points of the ith innermost intervals, where
7; < &;41. For convenience, define 79 = —o0.

It follows from Peto (1973) or Turnbull (1976) that the GMLE of S places all probability weights on the
innermost intervals. Thus it suffices to maximizes

L= H((Sl‘)e"ﬂ' _ (Sr‘)ebzi) or L = Zlog((sl{)ebq _ (S,-‘)ebzi),
=1 i=1

where S; = S(:), I; =sup{j: n; <L;,j >0} and r; = sup{j : 7; < R;,j > 0}, One can construct a numerical
example that —£ is not convex and has multiple stationary points, even subject to the monotone condition.
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3. Methods. We shall introduce the new procedure in this section.

3.1. Grouping. Grouping can reduce the dimension of the parameter space. We group the original data as
follows. Partition the whole range of data points into p subintervals. For example, group the data in the unit
of month, half-year or year. Let t; < --+ < t, be the partition points. Denote data after grouping by (L}, R}),
where L} =t; if t; < L; < Ljy; and R} = Ry if Rj_; < R; < R;, tg = —o0 and t,4y = o0.

After grouping, compute the GMLE using the method in §3.2 based on the grouped data (L}, R})’s. We shall
assume that the data hereafter have been grouped and abusing notation, we denote them by (L;, R;)’s instead.
3.2. A feasible algorithm for the GMLE. Abusing notations, we identify S with a vector (S, ..., Sp).
Similarly, we identify S@ with (S,..., s©).

Step 0. Let b® = 0 be the initial estimate of 4 and the GMLE of a survival function with observations (L;, R;),

j =1, ..., n be the initial estimate of S(®.

Step i+ 1 (i > 0). Let b® and S®) be the updated values of b and S at Step i. Do b-step and S-step as follows.
* (b-step) With § = S@ fixed, find a b so that the likelihood function £(S(),.) increases. Denote the up-
dated estimate b by ¢+, In particular, one can use the NR method to obtain the maximum point b of the

likelihood function with the given S = §0),

* (S-step) With b = b{i+1) fixed, search a non-increasing S so that the likelihood function £(-,50+) is

maximized (or increases). Denote the up-dated estimate S by S¢+1). In order to guarantee the up-dated S,

is nondecreasing, proceed as follows. Let S¢+10 = §(). At Sub-step j (j = 1, ..., m), update (Si, ..., Sm)
SO,

L s N ifh<j
by (SEH, . 85T), where SETY = 8, and Sju ={ bty P h=1,.,m, u>0isa
B ih>j
Tfu ZJ
number maximizing L(b*+1), 8. ) where 8., = (S1,u, -y Smou)-
Note: If such u, is difficult to choose, one may choose a u, satisfying
L(b(i+1)’ S(i+1),j) > L(b("+1), S(i+1),j—1), (3.1)

In particular, if ZInL(BY, S )|, o >0, uo = * ZInLBEY, 8. )|, where S, = (S1,us s Sm,) and
k is the smallest non-negative integer that is smaller than K|, such that Inequality (3.1) holds.
Stop at convergence.
Expression of the partial derivatives can be found in Appendix 1.
Remark. Let p; be the weight on the innermost interval (¢;,7:], p = (p1,...,Pm) and p®) the updated value of
p at the ith step. Since S(7;) = p;+1 +--- + pm, the S-step can also be replace by the p-step as follows.
* (p-step) With b = b(+1) fixed, search a non-increasing S so that the likelihood function £(-,b(+D) is
maximized (or increases). Let p(+1:0 = p(#). At Sub-step j (j = 1, ..., m), update (p,...,pm) by

(#41),5-1
iy Ly s s L TS S
(pgi'l"l)’],."ps;'i'l)ﬂ)’ Where p§:+1)1] — pj,uo and pj,u — ((+1]i-1;'il J’ h = 1, ".’m, Uo > 0 iS a
. B ifh#j,
number maximizing L(b®), S..u) where S.\, = (S1,u -y Smpu) a0d S; oy = Pig1u+ -+ + P u-

Moreover, the restriction 4 > 0 can be replaced by u > —pf‘iﬂ)’j -1
3.3. Estimation of the covariance matrix. It is well known that the GMLE of a survival function based on
interval-censored observation (L;, R;)’s may not be strictly decreasing on the set {n; : i =0, 1,...,m}. Thus the
GMLE S of Sp may satisfies S(7;) = S(7;+1) for some i. In the latter case, according to our simulation results, it
is often that the empirical Fisher information matrix is ill-conditioned or singular, unless we modify £ as follows.

Delete the innermost intervals at which the GMLE of Sy assigns no weight. Let (£f,7?], i = 1, ..., m*, be
the remaining innermost intervals. Modify £ as

£r = log{[S1°™* ~ 151"},
‘=1

where I = sup{j : 9] < L;} and r} =sup{j : 5} < R;}. Then use the inverse of the empirical Fisher information
matrix corresponding to this modification as the estimate of the covariance matrix.
This modification works well in our applications and simulations.
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4. Application.

Example 4.1. We apply our procedure to a breast cancer relapse follow-up study based on data obtained from
375 women with stages I - III unilateral invasive breast cancer surgically treated at Memorial Sloan-Kettering
Cancer Center between 1985 and 2001. The median follow-up duration was 7.4 years. Relapse time was given
by the time interval between surgery and the initial relapse. A relapse that took place between two successive
follow-up visits was regarded as interval censored. If a patient did not relapse toward the end of the study,
then her relapse time was right censored. Of the 375 observations, 288 were right censored (no relapse), 20
were left censored and 67 were strictly interval censored (87 relapses). The tumor diameter (i.e., the diameter
of the tumor which was removed in surgery), the number of lymph nodes with metastisis, and bone marrow
micrometastasis (BMM) were determined for each woman at the time of surgery. Denote the three covariates
by Ui, Uz and Us, respectively. The first variable, (tumor size), is discretized as Z; = 1(x,>3); the second
variable, (number of lymph nodes), is discretized as Z, = 1(x,>1); and the BMM variable is discretized as
Zs = { 1 if the number of metastasis bone marrow cells > 14,

0 otherwise. :

Table 1. Results on estimating 8 with cancer data.

data B1 B2 Ba

original
grouped in months

grouped in half-years

grouped in years

0.580 (0.229)
0.576 (0.229)
0.577 (0.229)
0.569 (0.229)

0.886 (0.242)
0.888 (0.242)
0.884 (0.242)
0.889 (0.242)

0.344 (0.293)
0.338 (0.293)
0.337 (0.293)
0.328 (0.293)

The NR and PL method do not work for this data set due the phenomenon (a). We use the proposed
procedure to obtain the GMLE. The GMLE’s of the regression coefficients based on the original data and the
grouped data are presented in Table 1. We only present the GMLE of the regression coefficients.

The number of parameters to be estimated is 56 in the original data. There are 54 innermost intervals with
21 of them having positive weights. We also grouped data by months, half-years and years. The numbers of
parameters are 16, 12 and 8, respectively. Thus properly grouping indeed reduces the dimension of the parameter
space. The GMLE's of §;’s and their standard errors are presented in Table 1 too. SE’s in Table 1 were computed
by the procedure introduced in §3.3.

Example 4.2. (Breast cancer cosmesis study). The data set can be found in Finkelstein and Wolfe (1985).
We refer the reader to that paper for a complete description of the study. Finkelstein (1986) applies the Cox
regression model to compare the patients who received adjuvant chemotheraphy to those who did not in this
study. So there is one covariate, the indicator that the patient received adjuvant chemotheraphy. There are 94
patients in the study. There are 30 innermost intervals. That is, m = 30 and p = 1. Thus there are 29 parameters
related to the underline survival function and one parameter related to covariate in the Cox model. The GMLE
of 3 is 0.80 with a standard error 0.29. A GMLE of S, is a step function taking jumps at 13 points as given

below.
t: 5 7 8 12 17 19 20 25 31 34 39 48
S: 097 096 092 0.87 0.83 081 0.70 0.65 0.58 0.57 0.43 0.27

Note we only give 12 points above, as there are two points that are very close. One can check that case (a) is
true for this data set, and the NR or PL method does not work.

5. Simulation. In order to assess the asymptotic properties of the GMLE, we carried out simulation studies.
Hereafter denote Exp(u, 0) a distribution with the pdf f(z) = %e‘[?_:&“"l]l(z»_,). The underlying distributions
are as follows: X has an exponential distribution Exp(5,5). The covariate Z = (2,1, Z2, Z5),, where Zy, Z5 and
Z3 are i.i.d. from a discrete distribution with pdf f(i) = <¢—, i = 1,...,6. (L, R) is generated by the following

Zj:lj
scheme:
©,7) if X <U,
(L,R) = { (20,00) if X > 20,
' U+EV,U+ (k+1)V) fX<20,kV<X-U<(k+1)Vand k> 1.
where U ~ U(0,2) and V ~ U(0,2.3).




We carried out simulation with sample sizes 50, 200 and 400, and with 1000 replications for each case. The
sample means and the standard errors (SE) are presented in Tables 2, 3 and 4. In grouping data, we tried lengths
of intervals 3, 5, and 8.

Table 2. Grouping effect on estimating 8 when n = 200.

grouping
width B B2 B3
: true value -0.1 0.2 -0.1
0 GMLE —0.091 (0.032) 0.194 (0.034) —0.091 (0.033)
3 GMLE —0.100 (0.041) 0.211 (0.044) —0.100 (0.040)
5 GMLE —0.105 (0.046) 0.214 (0.048) —0.104 (0.047)
8 GMLE —0.109 (0.055) 0.213 (0.057) —0.109 (0.053)
Table 3. Simulation results on convergence.
b1 B2 Bs
n =50 —0.123 (0.142) 0.238 (0.127) ~0.092 (0.129)
n = 200 —0.109 (0.055) 0.213 (0.057) —0.109 (0.053)
n = 400 —0.105 (0.037) 0.207 (0.039) —0.107 (0.038)
true value -0.1 0.2 -0.1

Table 4. Simulation results on estimating of variances when n = 400

B B; SE of j3; &5, SE of 5,
width =8 1=400
—0.1 -0.105 0.037 0.037 0.002
0.2 0.207 0.039 0.038 0.002
-0.1 -0.107 0.038 0.037 0.002
width =5 n=400
-0.105610 0.033031 0.033080 0.001190
0.206348 0.034651 0.034211 0.001282
-0.105921 0.033598 0.033039 0.001098
width =8 n=200
-0.108608 0.055201 0.042939 0.003206
0.213256 0.056661 0.047957 0.004768
-0.108610 0.053448 0.042963 0.003164
width =5 n=200
width =3 n=200
width =0 n=200
width =8 n=50

Table 2 indicates that the GMLE does not change much after grouping, though the SE increases, as expected.
Table 3 presents simulation results based on grouping intervals of length 8. The table suggests that the GMLE
of the regression coefficients based on grouped data are consistent. Table 4 present the mean of B,-, the SE of B,-,
the mean of the estimates of the SE of 3; and the SE of the estimates of the SE of fB;. Table 4 suggests that
estimates of the variances of the GMLE’s match the sample variances quite well.

Appendix 1.
We derive the partial derivatives needed in §3 here. Given the right boundary points of the IM’s, say,
tg=—00 <t <. <tm = 00, denote S; = §(t;), Si, = S(L;) and S,, = S(R), i.e., l; (resp. r;) represents the
index j such that S; = S(L;) (resp. R;). Then

zgb b ln(l - (S'ri)e“b) if li = Oa
ln((Sl‘.)e i (Sri)e ' ) = ez‘blnsli b if r; =m,
In((81,)=™" - (S,,)™") f0<l; <r; <m.
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—— =) ¥ (81,)%" —(Sr, )™
ab i=1 : IIIS‘[‘ if ri=m,

ezib .
and Bo(hs) = { ()" 1n(81) i£0 <hi<m

Lk -~ ) ., 2 -b[ s Bi(li) = Bi(r:) ]
ALAL — i Di = 1, m #“2\ Dy — z 24 ?
9600 gz‘z’{e (reztm) P8 = (S )

n Bo(l:)—Bo(r; e,
lnk %b3,D;. where Ds = { —Bol)=Bo(rd) i Ly

where By (h;) = { (()Sh.-)e”"(ln(sh.-))? i0< by <m,

if h; =0.
Write s. s.
U]k(u) = .19-’1‘“ ff k S .7., - ‘]§+31 Tf k S J"
o k> T +1 ifk>j.

Then s
Ujk(v) _ | —meayr k<,
du | -y ifk>.

82Ujk(u) _ 21__1_5_1_-’?“) if k <j,
Bu? 2 i ifk> .

Moreover, Uy (0) = S,

1-8; ifk>jand0<k<m,

Ou 0 otherwise.
82U (0 2S; fk<jand 0 <k <m,
—5%—)={2(Sj—-1) ifk>jand 0< k <m,
u
0 otherwise.

Abusing notations, write S; = S;(u) = Uj (u).

Ok ~ (S1) 1y k(u)—(sr.-)em_lU:.-k(u) k()
B o =20 {1"**""[ G~ (5 ] Hoem T, } '

t=1

Appendix 2

We use a simple numerical example to illustrate why the various existing algorithms do not work for the
GMLE.

§1. Consider fitting Cox’s regression model with five observations (L;, R;, Z;): (2,5,0), (3,4,0), (5,9,1), (1,6,1),
(7,8,0). It can be viewed as data from two groups, corresponding to Z; = 0 or 1. Then, the innermost intervals
are (3,4), (5,6) and (7,8). Let the weights on these innermost intervals be P1, p2 and p3, with p; +ps +p3 = 1 and
pi 2 0. Note that the baseline survival function S satisfies S(4—) = 1, S(4) = $(6-) = pa+ps, S(6) = S(8-)=p;
and S(8) = 0. For this example, it is more convenient to express the likelihood as a function of p;’s rather than
S. The likelihood is L = p?p3(1 — pgﬁ)(pz + p3)eﬂ. Since p; + pz + ps = 1, in view of L, it is simpler to write the
log likelihood as

I = loglpdpa(1 — p1)*" (1 - p5)]. (A1)

The parameter space is @ = {(8,p1,p3) : B € (—00,00),p1 > 0,p3 > 0,p+ 1+ p3 < 1} with p; = 1 — p; — p3. For
convenience, we write a = e hereafter. Thus,

| = 2logp1 +log ps + c:log(1 — p1) + log(1 — pg).

Since the likelihood function has only three variables, it can be shown by direct derivation that the GMLE of
(B,p1,p2,p3) is approximately (—0.461,2/3,0,1/3).




In general, the likelihood is not so simple and one needs to compute the GMLE by numerical methods.
We shall illustrate by this example that several naive numerical methods fail to yield the GMLE. They include:
(a) the Newton-Raphson (NR) method; (b) the scaled NR method and (c) the profile likelihood (PL) method.
Finally, we shall illustrate by this example why our new algorithm can yield the GMLE. The main difference is
that the first three algorithms cannot search the GMLE along the line p, = 0 (or p; + p3s = 1), while the new
algorithm can. Note that the GMLE is on boundary p; = 0.

§2. In order to apply the NR method, we need to compute the partial derivatives.

al pglogps 0% pg(logps)?

- = 1-— —8 Oy =28 D 2
T R A (=T 42
ol 2 o ol 1 (.vpg"1

—_ and — = — — . A3
Opp »; 1-p Ops p3 1-p% (43)

§2.1. (The NR method). At the GMLE (p;,ps) = (2/3,1/3) with 8 = —0.461, Equation (A.3) yields that
the gradient in (p;,ps) is (1.11,1.11). In other words, as (p1,p2) moves towards outside the parameter space, the
likelihood increases. Thus the maximum value of L without the restriction of the parameter space can only be
achieved outside the parameter space. The NR yields the unrestricted maximum point of L. Thus the solution
to the NR algorithm is not the GMLE.

§2.2. A scaled NR method is as follows.

Let B =0 or a =1 be the initial value, and let the GMLE (or SCE) of (p1,p3) at B = 0 be the initial value
of (p1,p3)-

Step 1. Mazimize L over 8 with given up-dated (p1,p3) using the NR method.

Step 2. Mazimize L over (p1,ps) with up-dated B using a scaled NR method, that is, scale the increments
Ap;’s in the original NR algorithm by a constant c so that the updated (p1,ps) remains in the parameter space.

Repeat Steps 1 and 2 until convergence.

However, it does not work in this example. In particular, in the initial step. we have 8 =0 (or a = 1) and
(p1,p3) = (3/5,2/5). In Step 1, L is maximized by a = —1‘1)‘;0?4 ~ 0.76 (see Eq. (A.4)). In Step 2, by Equation
(A.3), the gradient at (p1,p3) = (3/5,2/5) is (1.44,0.61). Thus (p;, ps) should be up-dated to (2 +1.44z, +0.61z)
for some z > 0. If z > 0, it violates the constraint p; + ps < 1. Thus the algorithm stops at $(4) = ps +p3 = 2/5
and S(6) = ps = 2/5 with 8 = log 0.76 (= —0.274), which is not the GMLE.

§2.3. A PL approach is as follows:

The initial step and Step 1 are the same as in the scaled NR method above.

Step 2 (p1-substep). Mazimize L over p; with up-dated ps and 3.

Step 8 (ps-substep). Mazimize L over p3 with up-dated py and S.

Repeat Steps 1, 2 and 8 until convergence.

However, the PL method still does not work. In particular, at Step 1, o = 0.76, p; = 0.6 and p3 = 0.4. The
gradient at (p1,ps) = (0.6,0.4) is (1.44,0.61). Thus we move (p1,ps) either to (0.6 + 1.44x,0.4) with = > 0 (p;
substep), or to (0.6,0.4 + 0.61z) with z > 0 (p3 substep). If z > 0, both the p;-substep and the ps-subtep will
move (py,ps) outside the parameter space. Consequently, it will stop at the value which is not the GMLE.

§2.4. There are three line segments in the boundary of the parameter space in (p;,p3). They are p; = 0,
p3 =0 and p; + p3 = 1. One can find the value that maximizes the likelihood on these line segments separately,
using the NR method, and they check which is the GMLE. This approach works in this example. However, if
there are m p;’s, we need to consider the subsets of the boundary corresponding to one p; = 0, two p; = 0, ...,
m — 2 p; = 0. Thus the order is O(m™/2). When m is large, this approach is not feasible.

§3. We now illustrate why the new algorithm works. Our new algorithm is as follows.

The initial step. Let the GMLE of (p1,p2,p3) be the initial value of the (p1,p2, p3) and a = 1 the initial value
of a.

B-step. Mazimize L over B with up-dated p;’s.

S-step. Each S-step consists of 3 substeps: p;-substep, pa-substep, p3-substep.

p1-substep. Consider a transformation p11(u) = 91‘—_,‘]'7“, p12(u) = £, and pia(u) = s u > 0. This
transformation ensures that (p11(u), p12(u), p13(v)) remains in the parameter space of (p1,p2,ps) for each u > 0.
Let u, be the value of u that mazimizes L(B,p11(u), p12(w), p13(u)) over u > 0, with B and p;’s given in the
previous step. Then up-date p; by p; = p1i(uo), i=1, 2, 3.
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pa-substep. Consider another transformation pa(u) = &5, p(v) = %ﬁ:‘, and pas(u) = #. If

lnL(ﬁ,pzl(u), 1c>23(u))|u__0 > 0, choose a u, > 0 that mazimizes L(B, pa1(u), p22(u), p2s(u)) over u > 0, with 8
and pi’s given in the previous step. Up-date p; by p; = pai(u,),i=1, 2, 3.

p3-substep. Consider a further new transformation ps;(u) = ii—u, pa2(u) = &, and p33(u) = E1+'_u- If

lnL(,B, p31(u), pss(w))| uzo > 0 choose a u, > 0 that mazimizes L(B, ps1(u), ps2(u), pss(u)) over u > 0, with B
and pi’s given in the previous step. Up-date p; by p; = p3i(u,),i=1, 2, 3.

At the p;-substep of the initial iteration step, by Eq. (A.5), %lnL(ﬂ, p11(u), p13(u))|u___0 = 0.51 > 0 at
(p1,p3) = (0.6,0.4), and u, ~ 0.1 maximizes L(8, p21(u), p23(u)). At this step (pl,pz,ps) is up-dated to (37,0, 3
(= (0.636,0.364)). At the ps-substep and ps-substep, by Equations (A.6) and (A.7), ZInL(8, pi1(v), pis (u))lu_0
0, ¢ = 2, 3, thus no change is made. However, since (p;,p2,p3) is changed at this S-step, 8 (or ) will also be
change at the next S-step.

In fact, in the next 3-step, S5 is up-dated to In0.69 = —0.371. In the p;-substep, 81‘lnL(B, p11(u), pls(u))lu_0
= 0.14 > 0, L is maximized by (p;,ps) = (3132, 23;) = (0.65,0.35) with u, = 0.042. by Equations (A.6) and
(A7), &lnL(ﬂ, pi1(u), p,;:,(u))[u_0 < 0, i = 2, 3, thus no change is made. However, since (p;,p2,p3) is changed
at this S-step, B (or @) will also be change at the next S-step.

Iteratively repeat these two steps, the algorithm will yield the GMLE (B8, p1, p2, p3) = (—0.461,2/3,0,1/3).
Remark 2. Recall that p(o) is the GMLE of p; when 8 = 0. Let $; be the GMLE under Cox’s model. According
to our observation, it is often the case that if pf ) = 0 then P; = 0 too. It is not clear that whether it is indeed
true that

P =0iff p; =0.

If this is true, then one can delete the p;’s for which p( ) = 0 in the algorithm to reduce the dimension of the
parameter space. Moreover, after this elimination, the NR method will work too, since the GMLE is in the
interior of the parameter space. However, both the sufficient and the necessary conditions may not hold.

§4. The following is the details of deriving the GMLE directly. There are only 3 variables in L, by direct
examination, one can find that the maximum value of L is outside the parameter space and the GMLE of
(p1,p2,p3) is on the boundary of the parameter space. Moreover, the GMLE of (p1,p2,p3) is on the subspace

p2=0,as L =0ifp; =0orps = 0. fp, =0, L—(l--p3)2 +"‘(1 p3) logps—-zgll_‘;%—logp u’—’ﬂ- =0
implies that unless p3 = 1, we have p§ =1/2 or p3 = 2%
o = —log2/logps. (A4)

For each fixed ps, if @ = —log2/logps, L achieves its maximum (1 — p3)2p§_1°82/ 10873 (] _ pg)—1082/logPs, The
GMLE can be found by plotting the graph of (ps, L).
§5. In this section, we shall derive the partial derivatives needed in §3.

aiupu(u) = (’11‘%132, 5%1112(“) = (_1%2)5; %Pu(u) = (1—:_1’—2?
SInL(B. P11 (), pra(0))] o = 222 lapf)g —a-1 (45)
B = Tu 50 = e )= e
%M(ﬂ,pm(u),pza(u))h:o =—2-1+4pyib . pe” + ay plpl . (A.6)
5P () = G, pepm(s) = o, %m(u) -
%lnL(ﬂ,pm(u),Pas(u))Iu:O =241 ;3133 - apgll_(lpé: Ps) +az flpl (A7)
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A TWO-STEP NEWTON-RAPHSON ALGORITHM
FOR GENERALIZED MAXIMUM LIKELIHOOD
ESTIMATION OF COX REGRESSION MODEL FOR
INTERVAL-CENSORED DATA IN BREAST
CANCER FOLLOW-UP STUDIES
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New York, NY 10021; and Department of Mathematical
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Interval-censored data (IC) arise naturally in breast cancer follow-up studies in which the
exact value of a time-to-event variable X cannot be observed but is known to lie in a time
interval usually defined by two successive follow-up time points. Examples of such an X
variable include time to relapse and time for the value of a biomarker to reach a target value
in a breast cancer prevention trial.

This research proposal is concerned with survival analysis of X in the presence of p
covariates denoted by the vector Z. Let S(x|z)=Pr(X>x|Z=z) denote the survival function of

X at Z=z. Cox regression model for S(x|z) is given by S(x|z)=[So(x)] o , where Sy is a
baseline survival function, and [ is a px1 vector of regression coefficients. Generalized
maximum likelihood estimates (GMLE) of O and S, have to be obtained iteratively. The
usual Newton-Raphson (NR) algorithm will most of the time not work owing to
dimensional constraint and an inherent tendency towards convergence to local maxima in
the IC situation. We propose a two-step NP algorithm to overcome these problems. At the
first step, O is updated with the usual NR algorithm. This step should present little
computational difficulty because the dimension p is usually manageable. Let x; <A < Xp
denote the right-end points of the innermost intervals for the IC data. At the second step of
our propose algorithm, the S(x;) are updated successively using univariate NR algorithm
one component at a time, and the monotonicity constraint S(x;)>A > S(xm) is maintained
at every move.

When m is large, we propose to partition the data into groups to reduce computational
burden. Monte Carlo simulations indicate that the GMLE's are quite robust against partition
size.

We have applied the two-step NR algorithm successfully to a breast cancer follow-up study
involving 375 patients and with m=21. The purpose of the study is to assess the prognostic
significance of bone marrow micrometastasis in predicting relapse and survival.

Our two-step NR algorithm provides for the first time a feasible computational algorithm
that will enable researchers to perform Cox regression analysis of IC data from breast
cancer follow-up studies of reasonable dimensions.

The U.S. Army Medical Research and Materiel Command under DAMD17-00-1-0448 supported this work.
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Abstract: The logrank test for the two-sample problem is very popular in medical research and is most
powerful under Cox’s proportional hazards model. There is a diagnostic plot for visualize whether data fit
Cox’s model, but there is no test available for testing whether a continuous and censored data set indeed
fits the model. We propose such a test. We demonstrate by cancer research data that if our test suggests
that Cox’s model is appropriate, both the logrank test and the test based on the weighted Kaplan-Meier
statistic give consistent results. If our test suggests that Cox’s model is not appropriate, the logrank test .
suggests that the difference between two survival functions is not significant, while test based on the weighted
Kaplan-Meier statistic indicates that the difference is significant.

1. Introduction.

Cox’s proportional hazards model has often been used in comparison of two survival functions. However,
there is no discussion in the literature on how to test whether the model is appropriate for a continous and -
censored data set. We shall address this issue in this paper.

In medical research, an important question that is asked frequently is whether one group of patients has
a higher survival rate than another group of patients, or whether a new treatment is better than another
treatment. This is called a two-sample problem. Let X;;, 7 = 1, ..., n;, be survival times of patients in
Group i, ¢ =1, 2. X;; has an unknown survival function S;. The null hypothesis for two-sample problems is

Hp: 81 = 8, (S1(z) = S2(z) for all z),
against the alternative hypothesis

Hy: 81 > 82 (S1(z) > Sa(z) for all z yet S1(z) > S2(z) for some z).

Another alternative is

Hj: 81 # Sa ( Si(z) # S2(z) for some z).

It is often that the value of X;; is not exactly observed, but is only known to lie within two time
points, say L;; and R;;. For example, relapse time of a cancer patient is only known to occur between two
consecutive follow-up times, or is right censored if relapse has not taken place by the last follow-up time.

! Partially supported by Army Grant DAMD17-00-1-0448.
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In the latter case, one can denote L;; the last follow-up time and R;; = co. We say such observations are
interval censored. In this paper, we assume that X;; may subject to interval censoring. Thus, one observes
(Lij, Rij), where {)]f.:; 2 EII:]J ’,2; ]] ii iz z ﬁj ’ Under right censoring, the observations are equivalent to
(M;;,8:5), where M;; = L;; and §;; is the indicator function of the event R;; = cc.

By letting Z be the indicator function of the event that the observation is from Group 1, one can use
regression models to test the two-sample problem. In particular, if data satisfy Cox’s proportional hazards
model, namely, S(t|Z) = (So(£))*"”, where S, is a baseline survival function, the null hopthesis Ho becomes

0: B = 0. Note that the test becomes the logrank test when data are right censored. The logrank test is
most powerful under the Cox regression model (see Miller (1981)).

In order to utilize the Cox regression model, it is important to test whether the Cox regression model

is appropriate for a given data set. Since

log(~log(S1(2))) = & + log(—log(S,(z))

and
log(—log(S2(z))) = log(—log(S.(z)),

it is suggested in several textbooks (see Cox (1994) and Lee (1992)) to use the log-log survival plot to see
whether the Cox regression model is appropriate. In particular, letting S; be the generalized maximum
likelihood estimator (GMLE) of the survival function based on observations from Group i (i = 1, 2), it is’
suggested to plot the two curves

y = log(~log(81(2))) and y = log(— log(S2(=)))

on the same graph. If the two curves are roughly parallel, then the Cox model is appropriate. However, there
is no test available for testing whether the two curves are parallel. We present two examples (see Examples
3.1 and 3.4) that even though the data does not fit Cox’s model, it is difficult to judge whether log-log plots
“appear” parallel.

Cox (1984, p.150) suggests a testing procedure for discrete data, with the test statistic H = hy(t)/h1(£),
where h; is an estimate of the discrete hazard of Sample i. However, if the data are continuous, e.g., there
is no tie among data, this approach is not appropriate. .

In Section 2, we propose an improved diagnostic plotting procedure and a test on whether the two curves
are parallel with right-censored data or interval-censored data. In Section 3, we apply the new procedures
to several data sets. We demonstrate the following interesting facts by two cancer research data examples.
(1) The log-log plotting cannot tell that the data do not fit Cox’s regression model.

(2) Even though it seems quite obvious that the two survival functions are different, the logrank test gives
insignificant results in both cases. :

(3) The test based on the weighted Kaplan-Meier statistic (see Pepe and Fleming (1991)) gives significant
results in both cases.

(4) Our new procedure indicates that both data do not fit Cox’s regression model.

We demonstrate by another cancer research data set that, when our procedure find no evidence that Cox’s

model is not appropriate for that data, both the logrank test and the test based on the weighted Kaplan-

Meier statistic give significant results. We further apply our new procedure to a simulation data set from -

Cox’s regression model, and the result is not significant, as it should be.

2. Method
We shall propose a test for HS: Cox’s model is appropriate.

2.1. With right-censored data

Under right censoring, the observations are (M;},d;;), j = 1, ..., n;, j = 1, 2. The GMLE of a survival
function based on Sample i is

G= [ a-—20

M) <t

ni—j+1




where M;(1y < -+ < Mj(,,) are order statistics of M;; from Sample i, and di(j) is the & that assosiated with
i(4)-
By the definition of Z and the property of the Cox model,

log[— log S1(t|Z)] — log[—1og S2(t|Z)] = B for each t and Z. (2.1)
In view of this equality, we propose to replace the log-log plot by plotting

U = U(t) = log(~log(51(t))) — log(—log(52(t))). (2:2)

In view of (2.1), we shall inspect whether the curve is some what a horizontal straight line, that is, it is
within a band. Furhtermore, in order to test H{, define a set of statistics as follows. Let by, ..., byt be all
the distinct exact observations from the pooled sample. Compute

U; = log[—log $1(b;)] — log[—log 82(b;)], 5 =1,...,m+1. (2.3)

Thus, one expects that Uy, ..., Up, 41 are statistically a constant. Note that if 3; (bj)=0o0r1,U; = +oo..
By deleting these types of b;, without loss of generality, we can assume that U;’s are all finite. Denote
Qi = Uiy1 - U, i = 1, ..., m For simplicity, we further assume that m is even (by deleting one number). Let
Q= (Q1,..,Qm)". Then Q; has mean zero. Note that the covariance matrix ¥; of

(Sl(tl)a ceny gl(tm1)a S'Z(tm1+1), ooy g2(tm1+m2 )),

are known, where t;, ...,t,,, are exact observations in the first group and ¢, 41, ..., tm,+m, aTe exact obser-
vations in the second group. For convenience, denote

8 = { Si(t) ifi=1,..,mq,
Sz(ti) if i =my,...,m1 +ma.

Note that Sy(b;) = s; if t; < bj < t;41 and i < my, or if t; < bj and i = my; and Sa(b;) = s; if t; < bj <ty
and i < mj+mg, or if 8, 4m, < b;j and i = my +my. By Slutsky’s theorem, one can compute the covariance
matrix of Q, say, =. In fact, & = HE,H', where H = (% Let 3 be the GMLE of X. Denote

Bs; )mx(m1+m2)'
W = (Wy,...,Wn) = £-Y2Q. If n is sufficient large, say n > 20, by the asymptotic normality of W,
without loss of generality, one can assume

Al W, ..., Wy, are a random sample from a normal distribution.
Let
/2 m
S (W — wn)? 25 2
V=GR 75— "3 Where y=— ) W;and up = — w;, 24
Sy (We — )’ 1= L Wiand w=00 5 Wi (2.4

i=1 i>m/2

then we expect that V' has an F distribution with (m/2) — 1 and (m/2) — 1 degrees of freedom. A test is to .
reject Hg if V' is too large or too small (V' should be around 1 under Hg).

2.2. With interval-censored data

We first discuss how to obtain a GMLE of S;. An interval-censored observation (L, R;) can be repre-
sented by an interval I; = { fII::,’II'?I:]] gé: : g: A nonempty intersection of some I;’s, say A, is called an
innermost interval if A satisfies that, for each i, ANI; equals § or A. Turnbull (1974) shows that the GMLE
based on random intervals I, ¢ = 1, ..., n, only puts weights on innermost intervals. Let Aj, ..., A, be all
the distinct innermost intervals induced by Iy, ..., I,. Let §; be the weight assigned by the GMLE to Aj
and 8 = (81, ..., 8n).- An GMLE of a cdf is

m .
F(t) = Z 8;1(4;c(~c0,t)), Where 1p is the indicator function of an event B. (2.4)
Jj=1




The GMLE $§ can be obtained by the following self-consistent algorithm:

(1) Let s =1/m, j =1, ..., m.
d 14, cry8™
2 For k > 1, let s§-k+1) -1 Z — (43CT)75 @ = Lm.
n i=1 2h=1 1(AhCIi)sh

Repeat Step 2 until convergence. The limit limk_,oo(sgk), very sgf)) is 8.

For more efficient algorithms for the GMLE, we refer to Wellner and Zhan (1997). By numerical
methods, we can compute the GMLE’s F', Fy and F}, and thus can compute A (see (2.1)).

It is well known that for each i, given interval-censored observations (L;;, R;;)’s, there is a unique GMLE
of S; such that it is a right-continuous step function with discontinuity points only at R;;’s. Let S; be such
a GMLE of S;, i = 1, 2, and let by, ..., by, be all the distinct finite points at which $; or S, takes a jump. .
We propose to replace log-log plot by plotting U = U(t) defined in (2.2), with new b;’s and new S;’s, and

reject Hy if V is too large or too small, where the test statistic V is defined in (2.4) with new b;’s and new
S,"S.

3. Application

In this section, we apply our new procedure to three cancer research data sets and one simulation data
set. Three are right-censored data and one is interval-censored data. We demonstrate by two cancer research
data examples (Example 1 and 3) the following interesting facts:

(1) The log-log plotting cannot tell that the data do not fit Cox’s regression model.

(2) Even though it seems quite obvious from survival plots that the two survival functions are different and
The test based on the weighted Kaplan-Meier statistic (see Pepe and Fleming (1991)) suggests that the
difference is significant in both cases, the logrank test suggests there is no difference in both cases. '

(3) Our new procedure indicates that both data do not fit Cox’s regression model.

We demonstrate by Example 2 that when our procedure find no evidence that Cox’s model is not
appropriate for that data, both the logrank test and the test based on the weighted Kaplan-Meier statistic
give significant results. Finally, we generated two samples of data from Cox’s regression model, our new test
reveals that there is no evidence that the data are not from Cox’s model, as we expect.

Example 1. (the AML Maintenance Study) (see Miller (1980)).

Fig. 1. Survival PLot for Leukemia Data
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A clinical trial to evaluate the efficacy of maintenance chemotherapy for acute myelogenous leukemia
(AML) was conducted. There are 11 right-censored data in the maintained group: 9, 13, 13+, 18, 23, 28+,
31, 34, 45+, 48, 161+. There 12 data in the control group: 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45. The
GMLE’s of the survival functions of these two groups are plotted in Figure 1. One may want to test whether"
the two distribution are the same. In Figure 2, we plot log(—log(S;(t))). It seems that the two curves are
parallel. The logrank test gives a P-value 0.0655. That is, the two distribution functions are not significant
different.

Fig. 2. log-log Survival PLot for Leukemia Data
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Pepe and Fleming (1991) propose a test based on the statistic fOT [81() — 82(t)]dt, where T is the longest
follow-up time. For this data set, it gives a P-value < 0.01. Thus the test suggests that the two distributions
are significantly different, which is consistent with Figure 1.

We plot the curve log(—log(5i(t))) — log(—log(8,(t))) in Figure 3. The curve in Figure 3 does not
appear to be a band. Here S)(t) is the survival function of the control group and Sa(t) is the survival
function of the maintenances group. We further compute statistics U;’s and V. For the current data set,
U;’s equal oo, 0o, 1.4467262, 1.7316298, 0.9870430, 0.4784492, 0.3912877, 0.6607606, 0.9265938, 0.5493081, -
0.8340220, 0.4937044, 0.8466185, oo, .

Note that for this data set, m =15, U; = oo at i =1 or 2 and U; = 0 at ¢ = 14 or 15. Thus we delete
these four points. By further deleting the middle point (so that m = 10), we found that V is extremely large
(=9.1), with a P-value < 0.025. If we delete the 13rd point, V = 10.1, the P-value is also < 0.025. Thus we
concluded that it is unlikely that the data fit the Cox model. Thus it is not a surprise that the logrank test
does not reject Hy.



Fig. 3. Diagnostic PLot for Leukemia Data
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Example 2. Survival data of 30 patients with AML are given in Lee (1992,p.257). Among them 17 patients
are old (> 50 years) with survival times: 6, 7, 8, 9, 15, 18, 19+, 23, 28+, 28+, 31, 39+, 45+. The survival
times of the younger group are 2, 3, 3, 3, 4, 4, 8, 8, 9, 10, 12, 13, 13, 14, 18, 26+, 35+. The two GMLE’s of
the survival functions are plotted in Figure 4.

In Figure 5, log(—log(8i)) are plotted. Lee claims that Figure 5 suggests that the data fit the Cox.
regression model. We use our approach to justify that claim. Here S;(t) is the survival function of the older
group and Sa(t) is the survival function of the younger group.

Fig. 4. Survival PLot for AML Data
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Fig. 5. log-log Survival PLot for AML Data

log(-log(S(t)))

0 5 10 15 20 25 30 35
t months

We plot the curve log(— log(S1(t))) — log(—log(S2(t))) in Figure 6. The curve in Figure 6 does appear
to be a band.

V = 1.00419 with 5 and 5 degrees of freedom, with a P-value > 0.1. Thus there is no evidence that the
Cox Model is not appropriate. v

The logrank test has a P-value 0.0249. This is an example that if the data fit the Cox model then the
logrank test is very powerful. :

Fig. 6. Diagnostic PLot for AML Data
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Example 3. We generate two samples of right-censored data from exponential distributions, with den51ty
functions f(z : 0) = e~*/%, £ > 0, § = 1, 2. The first sample has 20 data:

0.0115, 0.1240, 0.1660, 0.2830+, 0.3286, 0.3603, 0.4047, 0.4586, 0.4599, 0.4762,

0.8303, 0.8379+, 0.8647, 1.0008, 1.0872+, 1.1345, 1.1740, 1.2917+, 1.6129, 2.7834+,
The second sample also has 20 data:



0.0089, 0.0622, 0.0722, 0.1307, 0.1345, 0.1751, 0.2390, 0.2707, 0.4198, 0.4489,
0.4564, 0.5426, 0.6066, 0.7225-+, 0.8942, 0.9409, 0.9886, 1.4954, 1.9492, 2.4567.

The test statistic V' has a P-value > 0.05. Thus we cannot reject the null hypothesis H¢, which is a.
correct decision in this simulation study.

Example 4. We applied the new procedure to a standard breast cancer relapse follow-up study based on
data from 375 women with stages I - III unilateral invasive breast cancer surgically treated at Memorial
Sloan-Kettering Cancer Center between 1985 and 1990. The median follow-up duration was 46 months. -
Relapse time was given by the time interval between surgery and the initial relapse. A relapse that took
place between two successive follow-up visits was regarded as interval censored. If a patient did not relapse
toward the end of the study, then her relapse time was right censored. Of the 375 observations, 300 were
right censored (no relapse), 21 were left censored and 54 were strictly interval censored. Bone marrow
micrometastasis (BMM) was determined for each woman at the time of surgery. An important question is
whether remission duration is related to the extent of initial tumor cell burden (TCB) defined as number of-
BMM cells detected. We grouped the patient according to whether the patient’s number of BMM cells is
<14 or > 14.

S(t) Figure 7. Tumor Cell Burden
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The GMLE’s of the survival functions of these two groups are plotted in Figure 7. It seems from the
figure that the two survival functions are different. We also given the log-log plot in Figure 8. It is hard-
to say from the figure that the two curves are not parallel. Thus we let Z be the indicator function of the
event that the observation is from Population 2, i.e., the number of BMM cells is > 14, and assume that the
data fit Cox’s regression model. It turns out that the semi-parametric MLE of 8 is 0.328 with a standard
deviation 0.293. However, the P-value is 0.131. That is, 8 is not significantly different from 0. The Cox
model approach says that the BMM has no effect on the survival rate. The conclusion is not consistent with
Figure 1. '




Figure 8. Log-Log Plot For Tumor Cell Burden
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We compute the test based on the statistic [ W(t)(Fy(t) — Fy(t))dt, where W (t) = lo7r)and Tis a’
constant. The P-value is 0.029. In our calculation, we chose T = 3500, the longest follow-up time of a
patient. The result indicates that the effect of BMM is significant. That is, Hy is not true.

Applying the new approach to the data, we found that V is extremely large, with a P-value < 0.01.
Thus we concluded that it is unlikely that the data fit the Cox model. Thus it is not surprised why the Cox
regression analysis performs poorly. '

We further check whether the grouping in BMM and BMM- would fit the PH model. The P-value is
0.013 and the diagonostic plots are give in Figure 9.
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ABSTRACT

Consider the model Y = S.X + ¢ with interval-censored data, where € has an unknown cdf F,. The semi-
parametric MLE (SMLE) of S is well defined, but cannot be obtained by algorithms for M-estimators, or
by the Newton-Raphson method or the Monte-Carlo method. Thus it has not been studied in the literature .
even in the case of complete data. We propose a feasible algorithm to obtain all solutions of the SMLE.
Simulation suggests that the SMLE is consistent and the bootstrap estimator of the variance of the SMLE
matches the sample variance. We compare the SMLE to the Buckley-James estimator (BJE) in four data
sets with sample sizes up to 374. The results show that the SMLE is more robust and more reliable than
the BJE.

1. INTRODUCTION

Regression analysis is one of the most widely used statistical techniques. Its applications occur in almost
every field, including economics, engineering, the physical sciences, management, life and biological sciences
and the social sciences. We consider the simple linear regression problem with interval-censored data. In
particular, we assume that

Al. Y = BX +¢, where Y is a random variable, X a covariate taking at least two values, 8 an (unknown)

regression coefficient and € a random variable with an unknown c.d.f. F,.

Since no further assumption is made on (8, F,), this is a semi-parametric problem.

There are several estimators for the simple linear regression model with complete data. They are the
least squares estimator (LSE), Theil’s estimator (Theil (1)), various M-estimators (Huber (2)), adaptive
estimators (Bickel (3)), and Bayes estimators.

Sometimes Y may be right censored. There have been extensive studies on linear regression models
with right-censored data, see, e.g., Buckley and James (4), Miller (5) and Ritov (6), among others.

* Partially supported by DAMD17-99-1-9390 and DAMD17-00-1-0448.
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Interval censoring is another type of censoring. For example, in medical follow-up studies, a patient may
be inspected (or interviewed) total of K times (K > 1), at Ck,; < --- < Ck k. Time to event of interest, Y,
is often not observable but is only known to lie within two consecutive inspection times Ck ; and Ck, ji1,
where Ck 0 = —00, Ck,k+1 = 00, and 1 < j < K. In such a case we are only able to observe (L, R, X),
where —00 < L <Y < R < +o00. We say such an observation is interval censored. Hereafter, we assume that

A2. the observable random vector is (L, R, X), where (L, R) is an extended random vector (e.g., R = oo
under right censoring) such that either L<Y < RorL=Y =R.

Odell, et al. ((7)) considered the parametric maximum likelihood estimation for interval -censored
data based on a Weibull distribution. Self and Grossman (8) considered the linear regression problem with
interval-censored data for a given distribution F, with location-scale parameter and proposed a marginal
likelihood approach.

Several authors have proposed estimators for 8 under linear regression models with interval-censored
data, assuming F, is unknown. Rabinowitz, et al. (9) proposed a class of score statistics to estimate 8. Their
approach parallels the construction of the Buckley & James estimator (BJE) for right-censored data. Li and
Pu (10) considered generalizations of Miller’s estimator and the BJE for interval-censored data that contain
exact observations. Zhang and Li (11) and Li and Zhang (12), among others, studied M-estimators with
doubly-censored data and Case 1 interval-censored data. These approaches can be viewed as a modification
of the Semi-parametric MLE (SMLE). But they are not an SMLE (see Example 1.1 below).

Under the semi-parametric set-up, it is well known that the LSE is not efficient unless F, is a normal
distribution. The BJE is an extension of the LSE under censoring (see Li and Zhang (12)), thus the BJE
is not efficient. Consequently, since the BJE is also an M-estimator (see Zhang and Li ((11), p. 2723)), an.
M-estimator may not be efficient. Li and Zhang proposed efficient M-estimators for Case 1 interval-censored
data. However, it is not clear how to obtain an efficient estimator for arbitrary interval-censored data.

The SMLE of (3, F,) has long been ignored and there is no algorithm in the literature for obtaining the
SMLE with interval-censored data. Recently, Li and Zhang (12) mentioned without a proof that the SMLE
(they called the profile MLE) should be consistent with Case 1 interval-censored data. However, there is
no hint on how to compute it. Unlike the MLE in other cases, the SMLE cannot be computed by standard -
numerical methods, e.g., the Monte Carlo method, the Newton-Raphson method, the M-estimation methods
and the finite algorithms discussed in Osborne (13). For the sake of simplicity, we illustrate with 4 artificial
complete observations as follows.

Example 1.1. Suppose the observations (X;,Y;)’s are: (—1,0), (0,1), ((1,2) and (4,0). The generalized
likelihood function (Kiefer and Wolfowitz (14)) is

L(F,b) = [Ti_, (Y — bX;), where f(t) = F(t) — F(t—) and F is a cdf. (1.1)

Then, given b, L is maximized by the empirical cdf F},. where Byt) = ‘11-2:-1:1 1(y,—bx,<t) and 14 is the
indicator function of the event A. That is,

(33l ifb=1,
L(F,b) < L(¥},b) and L(Fy,b) = { (%)2@)2 if b=0, —1/4 or —2/3, (1.2)
(3)* otherwise.

Thus the SMLE of 3 is 1.

A key requirement in the Newton-Raphson method and the Monte Carlo method (see, e.g., Ingber (15)), -
as well as in the finite algorithms discussed in Osborne (13), is that L is contmuous at a neighborhood of
the maximum point or L is convex. It follows from (1.2) that I(b) = L(Fb, b) = 128 a.e., which is not the
maximum of L(F,b). That is, I(-) is neither continuous at the SMLE nor is convex in b. Consequently, the
two standard methods, as well as the finite algorithms discussed in Osborne, do not help to find the SMLE.

The M-estimate considered by Zhang and Li (12) is a solution to MF—Q = 0, where F' is properly
defined. Since iln—' = 0 a.e. by (1.2), the SMLE is somewhat an M—estlma,tor But this M-estimation
approach is non-mformatlve, as every value of b is an M-estimate. Theil’s estimator is the median of the
collection of slopes of the line segments connecting (X;,Y;) and (X i Y;), where 1 <4 < j < n (=4). Thus,
Theil’s estimator is not an SMLE. It is easy to verify that the LSE is not an SMLE neither. o
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Remark 1.1. It is worth mentioning that in Example 1.1, one may modify the likelihood function in (1.1)
as follows:

L= f[f(y; —bX;), f=F'"and F € Oy, (1.3)

=1

where O is a subset of certain absolutely continuous cdf’s. Then the values of (F,b) that maximizes L over
all b and over all F € ©g can be called a modified SMLE or repaired SMLE. But it has not been called the -
SMLE in the literature. This modification is the motivation of the M-estimation approach and the approach
based on score functions.

More recently, Yu and Wong (16) studled the SMLE with right-censored data. Simulation suggests that
the SMLE J is consistent and limp_; nVar(B) = 0 if F, is discontinuous. The property was proved under
a discrete assumption that (X,Y) takes on finitely many values. In contrast, all the existing estimators do
not have the second property. Under continuous assumptions, the SMLE with interval-censored data may
attain the efficient lower bound (see Cosslett (17)).

In this paper, we shall study how to derive an SMLE with interval-censored data. In Section 2, we
define the SMLE. In Section 3, we propose feasible algorithms to obtain all possible SMLE’s. In Section 4,
we present simulation results. The simulation results indicate that the SMLE is computationally feasible,
is consistent and its standard error can be estimated by the bootstrap method. In Section 5, we apply our
procedure to four data sets and compare to the LSE or the BJE. Several comments are made in Section 6.

2. THE SMLE
Let (Y, Xi, &, Li, R;), i = 1, ..., n, be i.i.d. copies of (Y, X, ¢, L, R). Denote random intervals

- rm - ] (Li —bX;, Ry —bX;] if L; < Ry,
I"I'(b)‘{[Li— X: R —bX;] ifL;= R,

Note that I; is a singleton if L; = R;. Denote ur the measure induced by F € F, where F is the class of all
distribution functions. In other words,

F(v) — F(u if I = (u,],
pr(I) = { FEZ; - Fgu)—) ifI= EZ ’"]]-

By assumptions Al and A2, I;(8) are ii.d. random intervals and ¢; € I;(8). Thus the generalized
likelihood function defined by Kiefer and Wolfowitz (14) is

L(F,b) = f[,w(z,-(b)), FeF,beR (= (~o00,00)). 1)

i=1

A semi-parametric MLE of (F,, ) maximizes L. Given b, the GMLE of F, based on observations I;(b)’s
maximizes L(,b) over F € F. Thus, in order to find the SMLE of (F,, 8), it suffices to maximize

I(b) = L(Fy,b), beR. (2.2) |

The SMLE of 8 may not be unique (see Example 3.1). Denote the set of all solutions of the SMLE of 3 by
B. Then each F}, b € B, is an SMLE of F,.

Under assumption Al, @ = E(e) may not exist. If it does exist, a can be estimated by & = [ tF(t),
where b € B. However, even if b = 3, & is not consistent unless Y is observable (with positive probability) -
everywhere on its range, or P(Y is not censored|Y = t) > 0 for all possible £. Thus, in general, o is not
identifiable under censoring (see, e.g., Buckley and James (4)). We shall ignore & in our study.

3. METHODS

In this section, we shall first introduce an algorithm which guarantees to obtain all solutions of the
SMLE and then introduce another algorithm which is faster, but offer no proof.
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In view of (2.2), in order to find the SMLE, it suffices to compare l(b), b € R. Let u;(b) and v;(b) be
the endpoints of the interval I;(b), i.e., u;(b) = L; — bX; and v;(b) = R; — bX;. Let Ty;—31(b) = u;(b) and
T;(b) = v;(b), i = 1, ..., n. Then we can determine the ranks of the 2n extended random variables. Given
b, it is well known that L(F},b) only depends on the ranks of the 2n T;(b)’s (see Turnbull (18)). That is,

I(b1) = U(b2) if the rank of T;(b;) is the same as the rank of T;(b;) for each i. (3.1)

Note that the ranks of these T;(b)’s will change only at the solutions of the equations T;(b) = T}(b),
i # j. The latter equations yield equations of forms

L,‘ - bX,' = Lj - ij, L,’ - in = Rj - ij or R, - bX,- = Rj - ij, (32)

where L;, R;, L; and R; are finite, and X; # X;. Since there are at most 4n? equations of forms in (3.2),
there are at most 4n? distinct solutions to these equations, denoted by by < -+ < by,. Let by = —oco and
bm+t1 = o0o. By construction, if b € (bg,bg+1), then T;(b)’s will not change their ranks. Consequently, it
follows from (3.1) that

for each k, I(b) (= L(F},b)) is constant on the open interval (b, br+1)- (3.3)

There are m + 1 disjoint open intervals of form (b, bx+1) and m disjoint closed intervals of form [b, bx].
As a consequence, there are at most 2m + 1 distinct values of I(b), which can be represented by 1(b2), j =1,
w2m+1, where b§ = by — 1, b3, ) =bm + 1,03, =b;, i =1, ..., m, and b3, ; = (b; + b;11)/2,i =1, ...,

m — 1. Denote
A= {b({, ) gm+1}' (34)

In order to find an SMLE of S, it suffices to compare I(b) for b € A;. Let B° be the set of all points in
A that maximize [(b), b € A;. The B° C B. Moreover, if b3;,; € B°, then (b3;,b5;,,) C B by (3.3). To_
summarize, we have the following algorithm:
Algorithm 3.1 (for obtaining all solutions of the SMLE of 3):
(1) Derive the set A; (see (3.4)).
(2) Compute F}, and I(b), where b € A;. For computing F}, we refer to Turnbull (18) or Wellner and Zhan

(19). Then

b € B iff either (1) b € B° or (2) b € (b3;,b3;42) for a b3;,, € B°.

Each (8, ), B € B, is an SMLE of (8, F,).

If the SMLE is not unique, one can make the following choices: (1) choosing an SMLE that is closest
to the median of B; (2) choosing an SMLE that is closest to the median of B°; (3) choosing an SMLE that
is closest to the BJE. The second choice is the easiest one to implement.

It is often time-consuming to compute the GMLE F},. Thus it is desirable to reduce the distinct values
of b involved in Step 2 of Algorithm 3.1. The following algorithm reduces the number of b involved by a
factor of 4.

Algorithm 3.2.
1. Find the solution b to the equation of form L; —bX; = L; —bX; or R; —bX; = R —bX;, where L;, L;,

R; and R; are finite, and X; # X;. Let A3 be the set of all the distinct elements of these solutions.

2. Compute F‘b and I(b), b € A;. Then identify those points in Az which maximize l(b), b € A, and denote

B* the collection of these points.

3. Choose b € B* that is closest to the median of B*. Treat it as the SMLE of S.

This algorithm is faster and our simulation results suggest that if n is large then it yields an SMLE. To
accelerate the algorithm, we may further make the following modifications:

(i) Randomly select a subset J of the set {(¢,7) : 1 < i < j < n}. Let A} be the collection of the solutions

b to the equation of form L; — bX; = L; — bX; or R; — bX; = R; — bX, where (¢,5) € J. '
(ii) Modify Az as A3 = A3 N [a,b], where [a,b] is an interval to which we suspect that 8 belongs. For

example, we may let [a,b] = [ﬁ 353, B+ 30,3], where 3 is the BJE and & &5 is the standard error (SE)

of B.



Note that Step (i) reduces the amount of (i,7) in calculation, and Step (ii) further reduces the cost in
computing the GMLE of F for selected b € Aj3.

The following example illustrates the difference between the two algorithms.
Example 3.1. Suppose that there are 3 observations (L;, R;, X;)’s. They are (1,4,1), (3,6,-1), (1,2,1).
We  first consider  Algorithm  3.1. Step 1 results in m = 5,
(bl, b2, b3, b4, b5) = (—2.5, —2, —1, —-0.5, 05) and

Ap = {b3,...,b9,} = {—3.5,-2.5,-2.25, -2, ~1.75, 1, —0.75, —0.5, 0, 0.5, 1.5}.
In Step 2, we need to compute F; and I(b), b € A;. For simplicity, we only demonstrate for b and bg.

(1) b = —3.5. Then the I;’s are (4.5,7.5], (=0.5,2.5], (4.5,5.5). F_35(t) = Moy + 2145 1(B) =
1(2)2'
3\3

(2) b3 = —2.25. Then the I's are (2.25,6.25], (0.75,3.75] and (2.25,4.25]. F_325(t) = 1(>s.5) and
I(t) = 1.

To summarize, Step 2 gives the following results:

i: 1 2 3 4 5 6 7 8 9 10 1
: (-35 -25 -225 -2 -175 -1 -0.75 —05 0 05 15
0H:\ 4 £ 1 1 1 1 1 025 025 025 025

Thus B = (-2.5,—0.5) and B° = {-2.25, -2, -1.75,—1,—0.75}. In this example there are infinitely many
SMLE’s. We choose the median of B°, that is, 3 = —1.75.

If we use Algorithm 3.2, Step 1 results in A; = {—2,—1} and Step 2 results in an estimate 3 = —1.
Both algorithms lead to an SMLE and the second algorithm is obviously faster.
Remark 3.1. Variance estimation is important for making inferences. Since we do not make any specific
assumption on F,, there are two possibilities for the variance of S.

1. Under interval censoring without exact observations, if the regularity conditions stated for the
Cramer-Rao lower bound hold and F, is differentiable, then a consistent estimator of the efficient lower
bound for the regression problem is

. = f(R: — BX:) — f(L; — BX; +
=1 ,z_;(f( e B g st gy 55)

where h,, =0, e.g., b, = n~1/5,

2. If F, is differentiable but Qﬂg‘—;(@l # E(%ﬂ), or if F, is not continuous, then the regularity -
conditions stated for the Cramer-Rao lower bound do not hold. In such situations, &5 is not a good estimator.

In view of the above discussion, we suggest to use the bootstrap method (see, e.g., Davison and Hinkley
(20)) to estimate the variance of 3. It seems to us from simulation that the bootstrap estimator is consistent.
4. SIMULATION RESULTS

Hereafter, we denote ,[:3 the SMLE. The simulation results suggest that B is consistent and the bootstrap
estimates of the variances of 3 match the sample variances. The simulation results also indicate that the
SMLE is a feasible procedure computationally.

In our simulations, we make use of a Case 1 or Case 2 interval censorship model. Under the Case 2
interval censorship model, the observable random vector satisfies

(—o0,U) fY<U
(LR ={ (UU+V) fU<Y<U+V
(U+V,00) £Y>U+V,

V > 0, and Y and (U, V) are independent. Under the Case 1 interval censorship model, the observable
random vector satisfies ( )

_f (=00, U) fY<U
(L, R) = {(U, x) €Y >U,

and Y and U are independent.



In our simulation, we further assume that the underlying distribution of Y and the censoring vector
satisfy the following conditions: (1) U is a continuous nonnegative random variables; (2) V is a nonnegative
continuous random variable; (3) X, €, U and V are independent.

Note that in our assumptions, ¢ and X may be continuous or discontinuous. We present simulation
results under three different sets of distributions. Under each set of assumptions, we compute 3 based on
sample sizes 30 and 100, respectively, with 500 simulations in each case. The program was written in C
language and the simulation was carried out on a Pentium III PC.

Case 1. (Case 2 interval censoring). Assume that € has the uniform distribution on the interval (0,2);
U, V and X have exponential distributions; and 8 = 1.

Case 2. (Case 2 interval censoring). Assume that € takes values 0.8 and 4 w.p. 0.8 and 0.2, respectively;
X is a discrete random variable which takes values ¢ w.p. i/15,i=1, 2, 3,4, 5; 8=1; and U and V have
uniform distributions on the intervals (0,4) and (0.5, 5), respectively.

Case 3. (Case 1 interval censoring). Assume that € has a uniform distribution on the union of intervals .
(0,0.5)U (50.5, 51); the inspection time U has a uniform distribution in the interval (0,3); X takes values 0.5
and 1 w.p. 0.5 and 0.5, respectively; and 8 = 1.

Table 1. Simulation Results on estimating 8 with interval-censored data.
cases n =30 n = 100 B
Case 1. Bn average (SE) 1.020 (0.710) 1.060 (0.401) 1
continuous F, average Sep 0.489 0.319
SE of sep (0.264) (0.203)
Case 2. Bn average (SE) 1.015 (0.279) 1.007 (0.073) 1
discrete F, average Sep 0.286 0.098
SE of sep (0.067) (0.013)
Case 3. Brn average (SE) 0.824 (1.355) 0.986 (0.391) 1
continuous F, average Sep 0.430 0.275
SE of sep (0.336) (0.098)

In Table 1, the entries in the column corresponding to n stand for the results with sample size n. The"
results in Table 1 suggest that G is consistent in all the three cases. Verify that Mgi;ill # E(%@l) in all

the three cases, thus we cannot use &g (see (3.5)) to estimate the variance of B. In each simulation, using

the bootstrap method described in Efron and Tibshirani (21) or Davison and Hinkley (20), we resampled
(with replacement) B times. Each resample size is n. The bootstrap estimate of o4, denoted by sep, is the

sample standard error (SE) of the B estimates 3 based on the B resamples. As suggested by Efron and"
Tibshirani, we set B = 30. The entries corresponding to the row of “average seg” and the row of “SE of
gep” are the sample means and the sample standard errors of these sep in the 500 simulations, respectively.
The differences between the sample SE’s of 8 and the bootstrap estimates §ep are within 2 standard errors
for the three cases, except for Case 3 when n = 30. This suggests that the bootstrap estimator sep of the
o4 is appropriate. _

We also carried out simulation under the assumption that € has a normal distribution or an exponential
distribution. The results are similar and are not reported here.

5. APPLICATIONS

In this section, we apply our method to several data sets, including complete data (L = R w.p.1),.
right-censored data and interval-censored data. We also compare the SMLE to the BJE, which is also an
M-estimator (see Li and Zhang (12)).

Example 5.1. (Magazine advertising (Chatterjee and Price ((22), p. 257)). In a study of revenue from
advertising, data were collected for 41 magazines in 1986. There was no censoring. Let X denote the number
of pages of advertising and Y the advertising revenue.
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Fig. 1. SMLE v.s. LSE
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The 41 data are plotted in Figure 1. Roughly speaking, there are three outliers in the data set. They
are (25, 50), (15, 49.7), (77, 6.6). The SMLE of 3 is unique for this data set. The SMLE and the LSE are
significantly different (see the first block of Table 2). The entries in the second block of Table 2 are results
after deleting the three outliers. From Table 2, it is seen that the SMLE of 8 does not change after deleting .
outliers, though the estimate of o changes.

In Figure 1, we also plot the fitted straight lines with and without deleting those three outliers. We
further plot the fitted line by the SMLE method without deleting the outliers. From Figure 1, it is seen that
the fitted line by the SMLE approach using the original data is very close to the least squares fitted line
after deleting outliers. This suggests that the SMLE is robust while the LSE is not.

Table 2. Results on estimating (a, 3)

SMLE (SE)

LSE (SE)

with outliers

1.200 (0.196)
-1.427 (3.178)

0.353 (0.1449)
7.604 (2.3466)

without outliers

QR ™

1.200 (0.1379)
-0.642 (1.410)

1.238 (0.138)
-0.962 (1.409)

Example 5.2. (Application to the Stanford heart transplant data). The data and detailed description can
be found in Miller ((5), p. 156). In this data, right-censored survival time, indicator of death, indicator of
rejection, 2 covariates including T5 mismatch and age of the recipient at time of transplant were recorded for
69 patients. For illustrative purposes, Buckley and James (4) compared their method to Miller’s estimator
and Cox method by fitting a simple linear regression for all death against age. We compare our method to .
the BJE using the same data under the log linear regression model.

Our algorithm results in an SMLE 3 = —9.77 with a standard error (SE) 1.56. The SMLE is significantly
negative and is consistent with our a priori guess, namely, younger patients fare better in the surgery.

There are 3 BJE’s of 3: —0.028, 0.014 and 0.016 with the SE 0.015 (only the first estimate and its SE
were reported in Buckley and James (4)). They are all not significant at level 0.05. This means that there
is no effect due to age.

In this example, the SMLE make more practical sense than the BJE, and thus is more reliable than the
BJE.



Example 5.3. (Application to a cancer research data). Our data analysis is applied to a standard
breast cancer relapse follow-up study based on data from 374 women with stages I - III unilateral invasive .
breast cancer surgically treated at Memorial Sloan-Kettering Cancer Center between 1985 and 1990. The
median follow-up duration was 46 months. Relapse time was given by the time interval between surgery
and the initial relapse. A relapse that took place between two successive follow-up visits was regarded as
interval censored. If a patient did not relapse toward the end of the study, then her relapse time was right
censored. Of the 374 observations, 300 were right censored (no relapse), 21 were left censored and 53 were
strictly interval censored. Bone marrow micrometastasis (BMM) was determined for each woman at the time -
of surgery. An important question is whether remission duration is related to the extent of initial tumor
burden defined as number of BMM cells detected. We compute the BJE and ﬁ under the log linear regression
model.

One expects that the larger the BMM was, the shorter the patient survived. Thus 8 < 0. The BJE of
B is —0.012 and our estimate is B = —0.059 with a (bootstrap) standard error 0.02. Note that the BJE does
not fall in the interval (3 —28E,B + 2SE), so they are significantly different. Moreover, the SMLE leans
more toward the correct direction than the BJE.
Example 5.4. (Application to a breast cosmesis data). We applied our procedure to the interval-censored
data set published in Finkelstein and Wolfe (23). The data is a result of a retrospective study to compare early
breast cancer patients who have been treated with primary radiation therapy and a adjuvant chemotherapy
to those treated with radiotherapy alone with respect to the cosmetic effects of their treatment. There is
only one covariate, the group status, in this data set. There are 94 patients. '

The BJE of 8 is —0.29 and our estimate ﬁ is —0.67 with a (bootstrap) standard error 0.336. The BJE
falls in the interval (3 — 2SE, B + 2SE). Thus they are not significantly different.

6. CONCLUSION

In this paper, we propose algorithms for the SMLE of 8. The procedure is actually applicable to.
complete data or right-censored data, as demonstrated in Examples 5.1 and 5.2.

We believe that each SMLE of § is consistent under interval censoring. The outline of the proof is as
follows.

(1) By the definition of the SMLE and the strong law of large number,

Jfim (lnL(Fy, B))/n > E(InL(F,, B))/n as..

(2) By Fatou’s Lemma, nli_)_njo(lnL(Fﬁ, 8))/n < E(InL(F.,b,))/n a.s., where (F.,b,) is the limit of a conver-

gent subsequence of the SMLE (ﬁ‘ﬁ, B).

(3) E(InL(F,b))/n < E(InL(F,,B))/n for each (F,b), and the equality holds only if b = 8 by the Shannon-

Kolmogorov inequality and the following assumption:

A3. Fe€F and P{F(W - bX)=F,(W—-pBX)for W=Lor R} =1 imply b=p.
(The assumptions made in Section 4 satisfy A3.)

Statements (1) and (2) imply that E(InL(F,,b.))/n = E(InL(F,, 8))/n, thus statement (3) implies that
b. = B. Since b, is an arbitrary limiting point of ,3, B is consistent.

In general, the BJE is not efficient and is not robust, as the BJE reduces to the LSE in the case of
complete data and the LSE is not efficient and is not robust (see Draper and Smith ((24), p. 342)). We
apply both the BJE procedure and the SMLE to complete data, right-censored data and interval-censored .
data. The SMLE seems quite robust and always give reasonable estimates. The BJE may give unreasonable
estimates.

For the semi-parametric set-up, there are several estimation procedures, e.g., the BJE and the M-
estimators. They are all obtained by iterative algorithms. The current procedure is also obtained by an
iterative algorithm, unless the data are Case 1 interval-censored data. In the latter case, the SMLE can be
obtained by a non-iterative algorithm, as the GMLE has closed-form solution (see Ayer et al. (25)). The.
reason is as follows. There are two steps in obtaining all SMLE’s: (1) finding all the discontinuity points b,,
wers bm (m < 4n?, see (3.4)), and (2) computing the GMLE Fj and comparing I(b), b = b;’s (see algorithm
3.1). Since the GMLE with Case 1 interval-censored data has a closed-form expression, all the SMLE’s of

B can be obtained in finitely many steps. However, with Case 1 interval-censored data, the BJE and the
M-estimates cannot be obtained by a non-iterative algorithm.
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We only discuss the simple linear regression model in this paper. The method can be extended to the
multiple linear regression model. However, the computation can only performed on high-speed computers.
Also, only extension of Algorithm 3.2 together with Steps (i) and (ii) is feasible due to the heavy computation
cost.
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Bone marrow micrometastasis is a significant predictor of long-term relapse-free survival for
breast cancer by a non-proportional hazards model.

George YC Wong Ph D 1, Qiqing Yu Ph.D 1 and Michael P Osbome, MD 1.1 Preventive Oncology
Research, Strang Cancer Prevention Center, New York, NY, United States, 10021 .

Background:Long-term predictive significance of the presence of bone marrow micrometastases
(BMM) on breast cancer relapse is a substantively important question for clinicians. Two published
long-term studies, the Royal Marsden study (Lancet 1999; 354:197-200) and our recent ASCO
abstract (Proc Am Soc Clin Oncol 2002,21:228), have both concluded that BMM was not a
significant predictor of relapse-free survival (RFS) by Cox proportional hazards (PH) regression
analysis. However the RFS curves comparing presence and absence of BMM were separated in both
these data sets. Diagnostic plots for PH assumption indicated that our RFS data were not consistent
with such an assumption Consequently, Cox regression was inappropriate for the data and the
logrank test was invalid. We analyzed our BMM data using a semi-parametric non-PH regression
model.

Material and Methods: BMM was determined using monoclonal antibodies to cytokeratin at
the time of initial surgery in 375 women with unilateral T1-2NO (56%), T1-2N1 (43%) and
T3-4(1%) breast cancer. Relapse time was interval censored between two successive follow-up
times. RFS data were analyzed using a regression model with a nonparametric error distribution that
does not involve PH assumption. Statistical inference was based on a semi-parametric maximum
likelihood estimation procedure.

Results: Median follow-up was 8 years (range 1 month-15 years). BMM was detected in 124 (35%)
patients Contingency table analysis showed that BMM did not correlate with the standard prognostic
variables of lymph node status (LN), tumor diameter (TD), estrogen and progesterone receptor
levels. In the univariate non-PH RFS analysis, BMM was significant at p=0.05. In the multivariate
analysis, BMM was still significant at p=0.05 in the presence of LN and TD. In contrast, only LN
and TD were needed in the multivariate analysis by Cox regression.

Discussion: Recent published long-term studies using Cox regression have led to result that BMM
is not a significant predictor for RFS. Using a novel non-PH regression model, we were able to
demonstrate BMM as a statistically independent significant predictor of RFS in a multivariate
regression model incorporating both LN and TD as covariates.



